[1] 罗中平, 姚亚林, 夏志华, 等. 磁性对人造金刚石单晶机械性能的影响 [J]. 高压物理学报, 2009, 23(3): 236–240 doi: 10.3969/j.issn.1000-5773.2009.03.012

LUO Z P, YAO Y L, XIA Z H, et al. Study on the influence of magnetism of synthetic diamond single crystal on their mechanical performances [J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 236–240 doi: 10.3969/j.issn.1000-5773.2009.03.012
[2] 张文凯, 彭放, 郭振堂, 等. 高压烧结镀Cr、Ti膜金刚石/铜复合材料热导率研究 [J]. 高压物理学报, 2012, 26(3): 306–312 doi: 10.11858/gywlxb.2012.03.010

ZHANG W K, PENG F, GUO Z T, et al. Research on thermal conductivity of diamond with Cr, Ti coating/copper composite materials by sintering under high pressure [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 306–312 doi: 10.11858/gywlxb.2012.03.010
[3] 曹海要, 战再吉. 铜/金刚石复合材料电磁轨道烧蚀特性的实验研究 [J]. 高压物理学报, 2016, 30(4): 317–322 doi: 10.11858/gywlxb.2016.04.008

CAO H Y, ZHAN Z J. Experimental study of Cu/diamond composite electromagnetic rail ablation characteristics [J]. Chinese Journal of High Pressure Physics, 2016, 30(4): 317–322 doi: 10.11858/gywlxb.2016.04.008
[4] 陆振勤, 胡毅胜, 郭滇生, 等. 金刚石合成设备的技术进展 [J]. 超硬材料工程, 2011, 23(3): 23–25 doi: 10.3969/j.issn.1673-1433.2011.03.006

LU Z Q, HU Y S, GUO D S, et al. Technical progress of diamond synthesis equipment [J]. Superhard Material Engineering, 2011, 23(3): 23–25 doi: 10.3969/j.issn.1673-1433.2011.03.006
[5] 张聪. 有限单元法在六面顶压机结构分析及优化设计中的应用 [D]. 长春: 吉林大学, 2010: 18-23.
[6] 王勖成. 有限单元法基本原理和数值方法 [M]. 2版. 北京: 清华大学出版社, 1997: 1-2.
[7] 黄志新. ANSYS Workbench 14.0超级学习手册 [M]. 北京: 人民邮电出版社, 2013: 1-3.
[8] 韩奇钢, 马红安, 李瑞, 等. 基于有限元法确立碳化钨顶锤的破裂判据 [J]. 高压物理学报, 2010, 24(1): 1–5 doi: 10.3969/j.issn.1000-5773.2010.01.001

HAN Q G, MA H A, LI R, et al. The criterion for crack of tungsten carbide anvil based on finite element method [J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 1–5 doi: 10.3969/j.issn.1000-5773.2010.01.001
[9] 韩奇钢, 马红安, 肖宏宇, 等. 基于有限元法分析宝石级金刚石的合成腔体温度场 [J]. 物理学报, 2010, 59(3): 1923–1927

HAN Q G, MA H A, XIAO H Y, et al. Finite element method study on the temperature distribution in the cell of large single crystal diamond [J]. Acta Physica Sinica, 2010, 59(3): 1923–1927
[10] 韩奇钢. 人造金刚石的制备方法及其超高压技术 [J]. 高压物理学报, 2015, 29(4): 313–320 doi: 10.11858/gywlxb.2015.04.012

HAN Q G. Preparation methods and ultra-high pressure technologies of synthetic diamonds [J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 313–320 doi: 10.11858/gywlxb.2015.04.012
[11] 王海阔, 贺端威, 许超, 等. 基于国产铰链式六面顶压机的大腔体静高压技术研究进展 [J]. 高压物理学报, 2013, 27(5): 633–661 doi: 10.11858/gywlxb.2013.05.001

WANG H K, HE D W, XU C, et al. Development of large volume-high static pressure techniques based on the hinge-type cubic presses [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633–661 doi: 10.11858/gywlxb.2013.05.001
[12] 王良文, 刘建设, 汪曙光, 等. UDS-Ⅲ型金刚石压机结构的有限元分析 [J]. 机械设计, 2005, 22(3): 38–41 doi: 10.3969/j.issn.1001-2354.2005.03.014

WANG L W, LIU J S, WANG S G, et al. Finite element analysis on the structures of UDS-Ⅲ typed diamond press [J]. Journal of Machine Design, 2005, 22(3): 38–41 doi: 10.3969/j.issn.1001-2354.2005.03.014
[13] 刘竹丽, 梁颖, 秦东晨. 基于有限元法的铰链梁疲劳强度分析与设计研究 [J]. 金刚石与磨料磨具工程, 2006(4): 38–42 doi: 10.3969/j.issn.1006-852X.2006.04.012

LIU Z L, LIANG Y, QIN D C. Investigation on fatigue strength and design of hinge sleeve based on FEM [J]. Diamond & Abrasives Engineering, 2006(4): 38–42 doi: 10.3969/j.issn.1006-852X.2006.04.012
[14] 张聪, 马红安, 韩奇钢, 等. 高压下国产六面顶压机铰链梁和工作缸的应力分析 [J]. 高压物理学报, 2010, 24(5): 321–325 doi: 10.11858/gywlxb.2010.05.001

ZHANG C, MA H A, HAN Q G, et al. Stress analysis on hinge sleeve and cylinder of china-type cubic-anvil high pressure apparatus under high pressure [J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 321–325 doi: 10.11858/gywlxb.2010.05.001
[15] 汪曙光. 基于Ansys Workbench六面顶压机优化分析 [J]. 金刚石与磨料磨具工程, 2015(2): 69–73

WANG S G. Optimization analysis of cubic diamond press based on Ansys Workbench [J]. Diamond & Abrasives Engineering, 2015(2): 69–73
[16] 牛炜霖. 聚晶金刚石取放机械手设计及压机顶锤应力分析 [D]. 郑州: 郑州大学, 2014: 15-17.
[17] 韩奇钢. 有限元法在六面顶顶锤优化设计中的应用 [D]. 长春: 吉林大学, 2008: 22-24.
[18] HAN Q G, LI M Z, JIA X P, et al. Finite element analysis and design of cubic high-pressure anvils based on the principle of lateral support [J]. Review of Scientific Instruments, 2010, 81(12): 123901. doi: 10.1063/1.3514091
[19] 韩奇钢, 马红安, 李瑞, 等. 六面顶压机硬质合金顶锤应力与破裂机理的有限元分析 [J]. 重型机械, 2007(3): 27–31 doi: 10.3969/j.issn.1001-196X.2007.03.008

HAN Q G, MA H A, LI R, et al. The stress and fracture mechanism analysis on cemented carbide anvils of cubic apparatus based on FEM [J]. Heavy Machinery, 2007(3): 27–31 doi: 10.3969/j.issn.1001-196X.2007.03.008
[20] 韩奇钢, 贾晓鹏, 马红安, 等. 基于三维有限元法模拟分析六面顶顶锤的热应力 [J]. 物理学报, 2009, 58(7): 4812–4816 doi: 10.3321/j.issn:1000-3290.2009.07.068

HAN Q G, JIA X P, MA H A, et al. Finite element simulations of thermal-stress on cemented tungsten carbide anvil used in cubic high pressure apparatus [J]. Acta Physica Sinica, 2009, 58(7): 4812–4816 doi: 10.3321/j.issn:1000-3290.2009.07.068
[21] HAN Q G, ZHANG Q, LI M Z, et al. An effective solution for the best set of beveling parameters of the cubic high-pressure tungsten carbide anvil [J]. Chinese Physics Letters, 2012, 29(11): 116201. doi: 10.1088/0256-307X/29/11/116201
[22] ADAMS D M, SHAW A C. A computer-aided design study of the behaviour of diamond anvils under stress [J]. Journal of Physics D, 1982, 15(9): 1609–1635. doi: 10.1088/0022-3727/15/9/006
[23] 于歌, 韩奇钢, 李明哲, 等. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析 [J]. 物理学报, 2012, 61(4): 63–67

YU G, HAN Q G, LI M Z, et al. Finite element analysis of the high-pressure tungsten carbide radius-anvil [J]. Acta Physica Sinica, 2012, 61(4): 63–67
[24] HAN Q G, YANG W K, ZHU P W, et al. Design and performance of tapered cubic anvil used for achieving higher pressure and larger sample cell [J]. Review of Scientific Instruments, 2013, 84(7): 073902. doi: 10.1063/1.4812351
[25] MOSS W C, HALLQUIST J O, REICHLIN R, et al. Finite element analysis of the diamond anvil cell: Achieving 4.6 Mbar [J]. Applied Physics Letters, 1986, 48(19): 1258–1260. doi: 10.1063/1.96996
[26] HAN Q G, JIA X P, QIN J M, et al. FEM study on a double-beveled anvil and its application to synthetic diamonds [J]. High Pressure Research, 2009, 29(3): 449–456. doi: 10.1080/08957950903109835
[27] HAN Q G, LI M Z, JIA X P, et al. Modeling of effective design of high pressure anvils used for large scale commercial production of gem quality large single crystal diamond [J]. Diamond and Related Materials, 2011, 20(7): 969–973. doi: 10.1016/j.diamond.2011.05.017
[28] HAN Q G, MA H A, HUANG G F, et al. Hybrid-anvil: a suitable anvil for large volume cubic high pressure apparatus [J]. Review of Scientific Instruments, 2009, 80(9): 096107. doi: 10.1063/1.3227239
[29] KONDRAT’YEV A I, VOHRA Y K. Finite-element modeling of stresses and strains in a diamond anvil cell device: case of a diamond-coated rhenium gasket [J]. High Pressure Research, 2007, 27(3): 321–331. doi: 10.1080/08957950701557573
[30] KONDRAT Y A, MURPHY M J, WEIR S T, et al. Comparison of finite element modeling and experimental pressure distribution in a diamond anvil cell [C]//APS Southeastern Section Meeting, 2002.
[31] 刘芳, 刘永刚, 谢鸿森. 六面顶压机高压腔体温度场的数值模拟 [J]. 高压物理学报, 2012, 26(2): 135–140 doi: 10.11858/gywlxb.2012.02.003

LIU F, LIU Y G, XIE H S. Numerical simulation of temperature field in sample assembly of cubic press [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 135–140 doi: 10.11858/gywlxb.2012.02.003
[32] 李瑞, 马红安, 韩奇钢, 等. 基于ANSYS的金刚石合成腔内的温度场分析 [J]. 吉林大学学报(工学版), 2008, 38(3): 535–538

LI R, MA H A, HAN Q G, et al. Analysis of temperature field in diamond synthetic chamber based on ANSYS [J]. Journal of Jilin (University Engineering and Technology Edition), 2008, 38(3): 535–538
[33] LI Z C, JIA X P, HUANG G F, et al. FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell [J]. Chinese Physics B, 2013, 22(1): 363–367.
[34] ZHANG Q, LI R, GU X, et al. Thermal analysis of the growth process of synthetic diamond in the large volume cubic press apparatus with large deformation of high pressure cell [J]. Journal of Crystal Growth, 2015, 420: 80–83. doi: 10.1016/j.jcrysgro.2015.03.036
[35] 卢金斌, 穆云超, 王秦生, 等. 基于ø69 mm腔体温度场数值模拟的高品级金刚石合成工艺优化 [J]. 金刚石与磨料磨具工程, 2010, 30(6): 50–53 doi: 10.3969/j.issn.1006-852X.2010.06.011

LU J B, MU Y C, WANG Q S, et al. Optimization of diamond synthesis process based on numerical simulation on temperature field in ø69 chamber [J]. Diamond & Abrasives Engineering, 2010, 30(6): 50–53 doi: 10.3969/j.issn.1006-852X.2010.06.011
[36] 刘衍聪, 郭欣, 伊鹏, 等. 六面顶压机合成腔中心温度轨迹控制方法研究 [J]. 人工晶体学报, 2011, 40(1): 27–32 doi: 10.3969/j.issn.1000-985X.2011.01.006

LIU Y C, GUO X, YI P, et al. Study on temperature tracking control approach of cubic press center [J]. Journal of Synthetic Crystals, 2011, 40(1): 27–32 doi: 10.3969/j.issn.1000-985X.2011.01.006
[37] LI R, MA H A, HAN Q G, et al. Simulation of pressure distribution in a pyrophyllite high-pressure cell by finite-element analysis [J]. High Pressure Research, 2007, 27(2): 249–257. doi: 10.1080/08957950701385819
[38] LI R, XU B, ZHANG Q, et al. Finite-element analysis on pressure transfer mechanism in large-volume cubic press [J]. High Pressure Research, 2016, 36(4): 575–584. doi: 10.1080/08957959.2016.1238915
[39] LI R, MA H A, YIN B H, et al. Finite element analysis on pressure-transmitting behavior of pyrophyllite block based on ANSYS/LS-DYNA [J]. Journal of Jilin University, 2008, 38(2): 292–297.
[40] 李瑞, 马红安, 臧传义, 等. 有限元法计算模拟金刚石合成腔内的电学场 [J]. 金刚石与磨料磨具工程, 2006(3): 4–7 doi: 10.3969/j.issn.1006-852X.2006.03.002

LI R, MA H A, ZANG C Y, et al. Computer simulation of the electric field in diamond synthetic chamber using FEM [J]. Diamond & Abrasives Engineering, 2006(3): 4–7 doi: 10.3969/j.issn.1006-852X.2006.03.002
[41] 肖宏宇, 臧传义, 马红安, 等. 碳素扩散场对塔状晶体合成的影响 [J]. 超硬材料工程, 2008, 20(6): 1–4 doi: 10.3969/j.issn.1673-1433.2008.06.001

XIAO H Y, ZANG C Y, MA H A, et al. Effects of carbon diffusion field on the synthesis of tower shape diamond crystals [J]. Superhard Material Engineering, 2008, 20(6): 1–4 doi: 10.3969/j.issn.1673-1433.2008.06.001