[1] KISI E H, HOWARD C J. Applications of neutron powder diffraction [M]. Oxford: Oxford University Press, 2008.
[2] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress [J]. High Pressure Research, 2011, 31(4): 493–532. doi: 10.1080/08957959.2011.618698
[3] GUTHRIE M. Future directions in high-pressure neutron diffraction [J]. Journal of Physics: Condensed Matter, 2015, 27(15): 153201. doi: 10.1088/0953-8984/27/15/153201
[4] KLOTZ S, BESSON J M, HAMEL G, et al. High pressure neutron diffraction using the Paris-Edinburgh cell: experimental possibilities and future prospects [J]. High Pressure Research, 1996, 14(4/5/6): 249–255. doi: 10.1080/08957959608201409
[5] LE GODEC Y, DOVE M T, REDFERN S A T, et al. Recent developments using the Paris-Edinburgh cell for neutron diffraction at high pressure and high temperature and some applications [J]. High Pressure Research, 2003, 23(3): 281–287. doi: 10.1080/0895795032000102496
[6] KLOTZ S. Techniques in high pressure neutron scattering [M]. Boca Raton, FL: CRC Press, Taylor and Francis, 2013.
[7] MCWHAN D B, BLOCH D, PARISOT G. Apparatus for neutron diffraction at high pressure [J]. Review of Scientific Instruments, 1974, 45(5): 643–646. doi: 10.1063/1.1686704
[8] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600

PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600
[9] SUN G G, ZHANG C S, CHEN B, et al. A new operating neutron scattering facility CMRR in China [J]. Neutron News, 2016, 27(4): 21–26. doi: 10.1080/10448632.2016.1233018
[10] PENG M, SUN L W, CHEN L, et al. A new small-angle neutron scattering spectrometer at China Mianyang research reactor [J]. Nuclear Instruments and Methods in Physics Research Section A, 2016, 810: 63–67. doi: 10.1016/j.nima.2015.11.141
[11] LI J, WANG H, SUN G G, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J]. Nuclear Instruments and Methods in Physics Research Section A, 2015, 783: 76–79. doi: 10.1016/j.nima.2015.02.026
[12] XIE L, CHEN X P, FANG L M, et al. Fenghuang: high-intensity multi-section neutron powder diffractometer at CMRR [J]. Nuclear Instruments and Methods in Physics Research Section A, 2019, 915: 31–35. doi: 10.1016/j.nima.2018.10.002
[13] SHULL C G, STRAUSER W A, WOLLAN E O. Neutron diffraction by paramagnetic and antiferromagnetic substances [J]. Physical Review, 1951, 83(2): 333–345. doi: 10.1103/PhysRev.83.333
[14] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
[15] KHVOSTANTSEV L G, SLESAREV V N, BRAZHKIN V V. Toroid type high-pressure device: history and prospects [J]. High Pressure Research, 2004, 24(3): 371–383. doi: 10.1080/08957950412331298761
[16] BESSON J M, NELMES R J, HAMEL G, et al. Neutron powder diffraction above 10 GPa [J]. Physica B: Condensed Matter, 1992, 180/181: 907–910. doi: 10.1016/0921-4526(92)90505-M
[17] BESSON J M, WEILL G, HAMEL G, et al. Equation of state of lithium deuteride from neutron diffraction under high pressure [J]. Physical Review B, 1992, 45(6): 2613–2619. doi: 10.1103/PhysRevB.45.2613
[18] KLOTZ S, BESSON J M, HAMEL G, et al. Neutron powder diffraction at pressures beyond 25 GPa [J]. Applied Physics Letters, 1995, 66(14): 1735–1737. doi: 10.1063/1.113350
[19] ZHAO Y S, VON DREELE R B, MORGAN J G. A high P-T cell assembly for neutron diffraction up to 10 GPa and 1500 K [J]. High Pressure Research, 1999, 16(3): 161–177. doi: 10.1080/08957959908200289
[20] BULL C L, FUNNELL N P, TUCKER M G, et al. PEARL: the high pressure neutron powder diffractometer at ISIS [J]. High Pressure Research, 2016, 36(4): 493–511. doi: 10.1080/08957959.2016.1214730
[21] ZHAO Y S, ZHANG J Z, XU H W, et al. High-pressure neutron diffraction studies at LANSCE [J]. Applied Physics A, 2010, 99(3): 585–599. doi: 10.1007/s00339-010-5640-1
[22] HATTORI T, SANO-FURUKAWA A, ARIMA H, et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC [J]. Nuclear Instruments and Methods in Physics Research Section A, 2015, 780: 55–67. doi: 10.1016/j.nima.2015.01.059
[23] SANO-FURUKAWA A, HATTORI T, ARIMA H, et al. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments [J]. Review of Scientific Instruments, 2014, 85(11): 113905. doi: 10.1063/1.4901095
[24] GUTHRIE M, BOEHLER R, TULK C A, et al. Neutron diffraction observations of interstitial protons in dense ice [J]. Proceedings of the National Academy of Sciences of the United States of American, 2013, 110(26): 10552–10556. doi: 10.1073/pnas.1309277110
[25] BOEHLER R, GUTHRIE M, MOLAISON J J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa [J]. High Pressure Research, 2013, 33(3): 546–554. doi: 10.1080/08957959.2013.823197
[26] ANDERSEN K H, ARGYRIOU D N, JACKSON A J, et al. The instrument suite of the European Spallation Source [J]. Nuclear Instruments and Methods in Physics Research Section A, 2020, 957: 163402. doi: 10.1016/j.nima.2020.163402
[27] GUTHRIE M. Experimental methods in the physical sciences [J]. Experimental Methods in the Physical Sciences, 2017, 49: 637–681. doi: 10.1016/B978-0-12-805324-9.00011-X
[28] GONCHARENKO I N, MIREBEAU I, OCHIAI A. Magnetic neutron diffraction under pressures up to 43 GPa: study of the EuX and GdX compounds [J]. Hyperfine Interactions, 2000, 128(1/2/3): 225–244. doi: 10.1023/A:1012639817199
[29] 惠博, 贺端威, 陆裕平, 等. 用于原位中子散射的液压对顶砧系统 [J]. 高压物理学报, 2013, 27(4): 517–522. doi: 10.11858/gywlxb.2013.04.008

HUI B, HE D W, LU Y P, et al. A hydraulic opposite anvil system for high-pressure in-situ neutron diffraction [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 517–522. doi: 10.11858/gywlxb.2013.04.008
[30] 史钰, 陈喜平, 谢雷, 等. 基于巴黎-爱丁堡压机的高压中子衍射技术 [J]. 物理学报, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179

SHI Y, CHEN X P, XIE L, et al. High-pressure neutron diffraction techniques based on Paris-Edingburgh press [J]. Acta Physica Sinica, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179
[31] MAO H K, BASSETT W A, TAKAHASHI T. Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar [J]. Journal of Applied Physics, 1967, 38(1): 272–276. doi: 10.1063/1.1708965
[32] 房雷鸣, 陈喜平, 谢雷, 等. 吉帕压力下原位中子衍射技术及其在铁中的应用 [J]. 高压物理学报, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001

FANG L M, CHEN X P, XIE L, et al. High pressure in-situ neutron diffraction under gigapascal of iron [J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001
[33] HU Q W, FANG L M, LI Q, et al. Enhancing the pressure limitation in large-volume Bridgman-anvil cell used for in-situ neutron diffraction [J]. High Pressure Research, 2019, 39(4): 655–665. doi: 10.1080/08957959.2019.1666841
[34] DEWAELE A, TORRENT M, LOUBEYRE P, et al. Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations [J]. Physical Review B, 2008, 78(10): 104102. doi: 10.1103/PhysRevB.78.104102
[35] TANGE Y, NISHIHARA Y, TSUCHIYA T. Unified analyses for P-V-T equation of state of MgO: a solution for pressure-scale problems in high P-T experiments [J]. Journal of Geophysical Research, 2009, 114(B3): B03208. doi: 10.1029/2008JB005813
[36] MARTÍINEZ-GARCÍA D, LE GODEC Y, MÉZOUAR M, et al. Equations of state of MgO at high pressure and temperature [J]. High Pressure Research, 2000, 18(1/2/3/4/5/6): 339–344. doi: 10.1080/08957950008200989
[37] 江明全, 李欣, 房雷鸣, 等. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证 [J]. 物理学报, 2020, 69(22).

JIANG M Q, LI X, FANG L M, et al. Optimal design and experimental verification of high temperature and high pressure assembly of neutron diffraction based on PE type press [J]. Acta Physica Sinica, 2020, 69(22).
[38] LUDL A A, BOVE L E, SAITTA A M, et al. Structural characterization of eutectic aqueous NaCl solutions under variable temperature and pressure conditions [J]. Physical Chemistry Chemical Physics, 2015, 17(21): 14054–14063. doi: 10.1039/C5CP00224A
[39] GIBSON R E. The calculation of the solubility of certain salts in water at high pressures from data obtained at low pressures [J]. Journal of the American Chemical Society, 1934, 56(4): 865–870. doi: 10.1021/ja01319a030
[40] TROPPER P, MANNING C E. The solubility of fluorite in H2O and H2O-NaCl at high pressure and temperature [J]. Chemical Geology, 2007, 242(3/4): 299–306. doi: 10.1016/j.chemgeo.2007.03.017
[41] SUZUKI Y, SAWADA T, MIYASHITA S, et al. In situ measurements of the solubility of crystals under high pressure by an interferometric method [J]. Review of Scientific Instruments, 1998, 69(7): 2720–2724. doi: 10.1063/1.1149005
[42] CHEN J, HU Q W, FANG L M, et al. In situ high-pressure measurement of crystal solubility by using neutron diffraction [J]. Review of Scientific Instruments, 2018, 89(5): 053906. doi: 10.1063/1.5021317
[43] PALMER S J P, FIELD J E, HUNTLEY J M. Deformation, strengths and strains to failure of polymer bonded explosives [J]. Proceedings of the Royal Society A, 1993, 440(1909): 399–419. doi: 10.1098/rspa.1993.0023
[44] PALMER S J P, FIELD J E. The deformation and fracture of $ \;\beta$ -HMX [J]. Proceedings of the Royal Society A, 1982, 383(1785): 399–407. doi: 10.1098/rspa.1982.0137
[45] GALLAGHER H G, MILLER J C, SHEEN D B, et al. Mechanical properties of $ \;\beta$ -HMX [J]. Chemistry Central Journal, 2015, 9: 22. doi: 10.1186/s13065-015-0091-6
[46] LI H, LI Y, BAI L F, et al. Acceleration of $ \delta$ - to $\;\beta$ -HMX-D8 phase retransformation with D2O and intergranular strain evolution in a HMX-based polymer-bonded explosive [J]. The Journal of Physical Chemistry C, 2019, 123(12): 6958–6964. doi: 10.1021/acs.jpcc.8b10002
[47] FITZGIBBONS T C, GUTHRIE M, XU E, et al. Benzene-derived carbon nanothreads [J]. Nature Materials, 2015, 14(1): 43–47. doi: 10.1038/nmat4088
[48] LI X, WANG T, DUAN P, et al. Carbon nitride nanothread crystals derived from pyridine [J]. Journal of the American Chemical Society, 2018, 140(15): 4969–4972. doi: 10.1021/jacs.7b13247
[49] WILLIAMS J H, COCKCROFT J K, FITCH A N. Structure of the lowest temperature phase of the solid benzene-hexafluorobenzene adduct [J]. Angewandte Chemie International Edition, 1992, 31(12): 1655–1657. doi: 10.1002/anie.199216551
[50] WANG Y J, DONG X, TANG X Y, et al. Pressure-induced Diels-Alder reactions in C6H6-C6F6 cocrystal towards graphane structure [J]. Angewandte Chemie International Edition, 2019, 58(5): 1468–1473. doi: 10.1002/anie.201813120