[1] IKEGAMI K, LU M, OHON R, et al. Nonlinear electrical properties of thin films of a light-emitting perovskite type oxide Pr0.002(Ca0.6Sr0.4)0.997TiO3 [J]. Procedia Engineering, 2012, 36: 388–395. doi: 10.1016/j.proeng.2012.03.057
[2] TAKASHIMA H, SHIMADA K, MIURA N, et al. Low-driving-voltage electroluminescence in perovskite films [J]. Advanced Materials, 2009, 21(36): 3699–3702. doi: 10.1002/adma.200900524
[3] SAHA S, SINHA T P, MOOKERJEE A. Electric structure, chemical bonding, and optical properties of paraelectric BaTiO3 [J]. Physical Review B, 2000, 62(13): 699–702.
[4] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展 [J]. 物理学报, 2018, 67(15): 60–72.

ZHAO G D, YANG Y L, REN W. Progress in unconventional ferroelectricity of perovskite-type oxides [J]. Acta Physica Sinica, 2018, 67(15): 60–72.
[5] PARK S Y, KUMAR A, RABE K. Carbon fibers from polyacrylonitrile/cellulose [J]. 2016 APS Meeting, 2016, 6(17): 160–172.
[6] FENNIE C J. Ferroelectrically induced weak ferromagnetism by design [J]. Physical Review Letters, 2008, 100(16): 167203. doi: 10.1103/PhysRevLett.100.167203
[7] DOLAN D H, AO T. Cubic zirconia as a dynamic compression window [J]. Applied Physics Letters, 2008, 93(2): 021908. doi: 10.1063/1.2957996
[8] RESTANI R, MARTIN M, KIVEL N, et al. Analytical investigations of irradiated inert matrix fuel [J]. Journal of Nuclear Materials, 2009, 385(2): 435–442. doi: 10.1016/j.jnucmat.2008.12.030
[9] CONRADSON S D, DEGUELDRE C A, ESPINOSA-FALLER F J, et al. Complex behavior in quaternary zirconias for inert matrix fuel: what do these materials look like at the nanometer scale? [J]. Progress in Nuclear Energy, 2001, 38(3/4): 221–230.
[10] WANG S J, ONG C K, XU S Y, et al. Crystalline zirconia oxide on silicon as alternative gate dielectrics [J]. Applied Physics Letters, 2001, 78(11): 1604–1606. doi: 10.1063/1.1354161
[11] LIN Y S, PUTHENKOVILAKAM R, CHANG J P, et al. Interfacial properties of ZrO2 on silicon [J]. Journal of Applied Physics, 2003, 93(10): 5945–5952. doi: 10.1063/1.1563844
[12] WILK G D, WALLACE R M, ANTHONY J M. High-κ gate dielectrics: current status and materials properties considerations [J]. Journal of Applied Physics, 2001, 89(10): 5243–5275. doi: 10.1063/1.1361065
[13] MCEVOY A. Thin SOFC electrolytes and their interfacesâ: a near-term research strategy [J]. Solid State Ionics, 2000, 132(3/4): 159–165.
[14] BILIĆ A T, GALE J D. Ground state structure of BaZrO3: a comparative first-principles study [J]. Physical Review B, 2009, 79(17): 174107. doi: 10.1103/PhysRevB.79.174107
[15] ZHANG H W, FU X Y, NIU S Y, et al. Synthesis and photoluminescence properties of Eu3+-doped AZrO3 (A = Ca, Sr, Ba) perovskite [J]. Journal of Alloys and Compounds, 2008, 459(1/2): 103–106.
[16] DUBEY V, TIWARI N. Structural and optical analysis on europium doped AZrO3 (A = Ba, Ca, Sr) phosphor for display devices application [C]//Bikaner, India. Author(s), 2016, 1728(1): 15-32.
[17] RANDALL C A, BHALLA A S, SHROUT T R, et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order [J]. Journal of Materials Research, 1990, 5(4): 829–834. doi: 10.1557/JMR.1990.0829
[18] BRADHA M, HUSSAIN S, CHAKRAVARTY S, et al. Total conductivity in Sc-doped LaTiO3+δ perovskites [J]. Ionics, 2014, 20(9): 1343–1350. doi: 10.1007/s11581-014-1216-y
[19] GEPPERT B, GROENEVELD D, LOBODA V, et al. Finite-element simulations of a thermoelectric generator and their experimental validation [J]. Energy Harvesting and Systems, 2015, 2(1/2): 97–103.
[20] MUHAMMAD I D, AWANG M, MAMAT O, et al. First-principles calculations of the structural, mechanical and thermodynamics properties of cubic zirconia [J]. World Journal of Nano Science and Engineering, 2014, 4(2): 97–103. doi: 10.4236/wjnse.2014.42013
[21] BAERENDS E J. Perspective on “Self-consistent equations including exchange and correlation effects” [J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2000, 103(3/4): 265–269.
[22] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301
[23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
[24] JIA X F, HOU Q Y, XU Z C, et al. Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle [J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 128–135. doi: 10.1016/j.jmmm.2018.05.037
[25] FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization [J]. The Journal of Physical Chemistry, 1992, 96(24): 9768–9774. doi: 10.1021/j100203a036
[26] DING Y C, CHEN M, WU W J. Phase stability, elasticity, hardness and the minimum thermal conductivity of Si2N2O polymorphs from first principles calculations [J]. Physica B: Condensed Matter, 2014, 449: 236–245. doi: 10.1016/j.physb.2014.05.042
[27] GONZE X, BEUKEN J M, CARACAS R, et al. First-principles computation of material properties: the ABINIT software project [J]. Computational Materials Science, 2002, 25(3): 478–492. doi: 10.1016/S0927-0256(02)00325-7
[28] DING J F, LI X M, CUI L L, et al. Electronic and optical properties of anion-doped c-ZrO2 from first-principles calculations [J]. Journal of Central South University, 2014, 21(7): 2584–2589. doi: 10.1007/s11771-014-2216-9
[29] BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1955, 23(7): 474.
[30] WU Z J, HAO X F, LIU X J, et al. Structures and elastic properties of OsN2 investigated via first-principles density functional calculations [J]. Physical Review B, 2007, 75(5): 054115. doi: 10.1103/PhysRevB.75.054115
[31] ZHAO J J, WINEY J M, GUPTA Y M. First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry [J]. Physical Review B, 2007, 75(9): 094105. doi: 10.1103/PhysRevB.75.094105
[32] GAO F M. Theoretical model of intrinsic hardness [J]. Physical Review B, 2006, 73(13): 132104. doi: 10.1103/PhysRevB.73.132104
[33] FAN C Z, ZENG S Y, LI L X, et al. Potential superhard osmium dinitride with fluorite and pyrite structure: first-principles calculations [J]. Physical Review B, 2006, 74(12): 125118. doi: 10.1103/PhysRevB.74.125118
[34] 丁迎春, 肖冰. 一种超硬新材料BeP2N4的电子结构和力学性质及本征硬度 [J]. 物理化学学报, 2011, 27(7): 1621–1632. doi: 10.3866/PKU.WHXB20110730

DING Y C, XIAO B. Electronic structure, mechanical properties and intrinsic hardness of a new superhard material BeP2N4 [J]. Acta Physico-Chimica Sinica, 2011, 27(7): 1621–1632. doi: 10.3866/PKU.WHXB20110730
[35] SHARMA A D, SINHA M M. Lattice dynamics of protonic conductors AZrO3 (A = Ba, Sr & Pb): a comparative study [J]. Advanced Materials Research, 2013, 685: 191–194. doi: 10.4028/www.scientific.net/AMR.685.191
[36] 刘哲, 李辉, 赵鹏. Ti5Al2C3与Ti2AlC、Ti3AlC2结构、弹性和电子性质的第一性原理对比研究 [J]. 人工晶体学报, 2019, 48(5): 834–839. doi: 10.3969/j.issn.1000-985X.2019.05.011

LIU Z, LI H, ZHAO P. A first-principles comparative study of the structure, elasticity and electronic properties of Ti5Al2C3, Ti2AlC and Ti3AlC2 [J]. Journal of Artificial Lenses, 2019, 48(5): 834–839. doi: 10.3969/j.issn.1000-985X.2019.05.011
[37] LAI J, JIA X, WANG D. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers [J]. Nature Communications, 2019, 10(1): 155–167. doi: 10.1038/s41467-018-07819-1
[38] GULL E, PARCOLLET O, MILLIS A J. Superconductivity and the pseudogap in the two-dimensional Hubbard model [J]. Physical Review Letters, 2013, 110(21): 256–298.