[1] NOUGUEZ B. Dual formulation warheads: a mature technology [C]//Processing of Insensitive Munitions Technology Seminar. Williamsburg, 1996.
[2] 彭翠枝, 范夕萍, 任晓雪, 等. 国外火炸药技术发展新动向分析 [J]. 火炸药学报, 2013, 36(3): 1–5 doi: 10.3969/j.issn.1007-7812.2013.03.001

PENG C Z, FAN X P, REN X X, et al. Analysis on recent trends of foreign propellants and explosives technology development [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 1–5 doi: 10.3969/j.issn.1007-7812.2013.03.001
[3] HELD M. Detonation behaviour of adjacent high explosive charges with different detonation velocities [C]//13th Symposium (International) on Detonation, 2006.
[4] 沈飞, 王辉, 罗一鸣. DNTF基同轴双元装药的爆轰波形及驱动性能 [J]. 含能材料, 2018, 26(7): 614–619

SHEN F, WANG H, LUO Y M. Detonation wave-shape and driving performance of coaxial binary charge of DNTF-based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2018, 26(7): 614–619
[5] 周涛, 程淑杰, 王辉, 等. DNTF基含铝炸药复合装药的驱动特性 [J]. 火炸药学报, 2015, 38(5): 46–50

ZHOU T, CHENG S J, WANG H, et al. Research on driving characteristic for compound charge of DNTF-based aluminized explosive [J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 46–50
[6] ARTHUR S, JOHN C. Blast and fragmentation enhancing explosive: US 5996501 [P]. 1999-12-07.
[7] ASLAM T D, BDZIL J B, STEWART D S. Level set methods applied to modeling detonation shock dynamics [J]. Journal of Computational Physics, 1996, 126(2): 390–409. doi: 10.1006/jcph.1996.0145
[8] 尹俊婷, 蔚红建, 栗宝华, 等. 金属加速炸药/高爆热炸药复合装药爆炸特性研究 [J]. 火工品, 2015(3): 33–37 doi: 10.3969/j.issn.1003-1480.2015.03.010

YIN J T, YU H J, LI B H, et al. Explosion characteristic of metal accelerating explosive/high detonation heat explosive composite charge [J]. Initiators & Pyrotechnics, 2015(3): 33–37 doi: 10.3969/j.issn.1003-1480.2015.03.010
[9] 牛余雷, 王晓峰, 余然. 双元复合炸药装药水下爆炸能量输出特性 [J]. 含能材料, 2009, 17(4): 415–419 doi: 10.3969/j.issn.1006-9941.2009.04.010

NIU Y L, WANG X F, YU R. Characteristic of energy output of underwater explosion for dual explosive charge [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 415–419 doi: 10.3969/j.issn.1006-9941.2009.04.010
[10] 周涛, 沈飞, 王辉. 预制破片与轻质壳体阻抗匹配对破片初速及完整性的影响 [J]. 高压物理学报, 2018, 32(4): 045104 doi: 10.11858/gywlxb.20170602

ZHOU T, SHEN F, WANG H. Influence of impedance matching between prefabricated fragments and light shell on initial velocity and completeness of fragments [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045104 doi: 10.11858/gywlxb.20170602
[11] CHAN S K. Reaction delay of aluminum in condensed explosives [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(6): 897–903. doi: 10.1002/prep.201400093
[12] 炸药圆筒试验光学扫描和激光干涉联合测试方法: GJB 8381-2015 [S]// 中华人民共和国国家军用标准, 2015.
[13] LINDSAY C M, BUTLER G C, RUMCHIK C G, et al. Increasing the utility of the copper cylinder expansion test [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(5): 433–439. doi: 10.1002/prep.201000072
[14] 沈飞, 王辉, 袁建飞, 等. 铝含量对RDX基含铝炸药驱动能力的影响 [J]. 火炸药学报, 2013, 36(3): 50–53 doi: 10.3969/j.issn.1007-7812.2013.03.012

SHEN F, WANG H, YUAN J F, et al. Influence of Al content on the driving ability of RDX-based aluminized explosives [J]. Chinese Journal of Explosives and Propellants, 2013, 36(3): 50–53 doi: 10.3969/j.issn.1007-7812.2013.03.012
[15] MARK S, SCOTT I J. Dynamics of high sound-speed metal confiners driven by non-ideal high-explosive detonation [J]. Combustion and Flames, 2015, 162: 1857–1867. doi: 10.1016/j.combustflame.2014.12.007