[1] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. doi: 10.1016/0734-743X(95)00018-2
[2] RAMAJEYATHILAGAM K, VENDHAN C P. Deformation and rupture of thin rectangular plates subjected to underwater shock [J]. International Journal of Impact Engineering, 2004, 30(6): 699–719. doi: 10.1016/j.ijimpeng.2003.01.001
[3] NURICK G N, RADFORD A M. Deformation and tearing of clamped circular plates subjected to localised central blastloads [C]//REDDY B D. Recent developments in computational and applied mechanics. A Volume in Honour of John B Martin, 1997: 276–301.
[4] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. doi: 10.1016/S0734-743X(00)00051-8
[5] JACOB N, YUEN S C K, NURICK G N, et al. Scaling aspects of quadrangular plates subjected to localised blast loads—experiments and predictions [J]. International Journal of Impact Engineering, 2004, 30(8/9): 1179–1208.
[6] LONGÈRE P, GEFFROY-GRÈRE A-G, LEBLÉ B, et al. Ship structure steel plate failure under near-filed air-blast loading: numerical simulations vs experiment [J]. International Journal of Impact Engineering, 2013, 62: 88–98.
[7] 李典, 郑羽, 陈长海, 等. 空爆载荷下舰船典型结构损伤研究进展 [J]. 船舶力学, 2020, 24(4): 543–557. doi: 10.3969/j.issn.1007-7294.2020.04.015

LI D, ZHENG Y, CHEN C H, et al. Review on damage of typical ship protective structures under explosion load [J]. Journal of Ship Mechanics, 2020, 24(4): 543–557. doi: 10.3969/j.issn.1007-7294.2020.04.015
[8] JACOB N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads [J]. Engineering Structure, 2007, 29(10): 2723–2736. doi: 10.1016/j.engstruct.2007.01.021
[9] TEELING-SMITH R G, NURICK G N. The deformation and tearing of thin circular plates subjected to impulsive loads [J]. International Journal of Impact Engineering, 1991, 11(1): 77–91. doi: 10.1016/0734-743X(91)90032-B
[10] SHEN W Q, JONES N. Dynamic response and failure of fully clamped circular plates under impulsive loading [J]. International Journal of Impact Engineering, 1993, 13(2): 259–278. doi: 10.1016/0734-743X(93)90096-P
[11] BONORCHIS D, NURICK G N. The influence of boundary conditions on the loading of rectangular plates subjected to localised blast loading—importance in numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 40–52. doi: 10.1016/j.ijimpeng.2008.03.003
[12] NURICK G N, GELMAN M E, MARSHELL N S. Tearing of blast loaded plates with clamped boundary conditions [J]. International Journal of Impact Engineering, 1996, 18(7/8): 803–827.
[13] MENKES S B, OPAT H J. Broken beams—tearing and shear failures in explosively loaded clamped beams [J]. Experimental Mechanics, 1973, 13(11): 480–486. doi: 10.1007/BF02322734
[14] BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81–98. doi: 10.1016/j.ijmecsci.2004.02.006
[15] TENG X, WIERZBICKI T. Evaluation of six fracture models in high velocity perforation [J]. Engineering Fracture Mechanics, 2006, 73(12): 1653–1678. doi: 10.1016/j.engfracmech.2006.01.009
[16] BAO Y B, WIERZBICKI T. On the cut-off value of negative triaxiality for fracture [J]. Engineering Fracture Mechanics, 2005, 72(7): 1049–1069. doi: 10.1016/j.engfracmech.2004.07.011