[1] BROSTIGEN G, KJEKSHUS A. Redetermined crystal structure of FeS2 (Pyrite) [J]. Acta Chemica Scandinavica, 1969, 23(6): 2186–2188. doi: 10.3891/acta.chem.scand.23-2186
[2] BITHER T A, BOUCHARD R, CLOUD W, et al. Transition metal pyrite dichalcogenides. High-pressure synthesis and correlation of properties [J]. Inorganic Chemistry, 1968, 7(11): 2208–2220.
[3] NOWACK E, SCHWARZENBACH D, HAHN T. Charge densities in CoS2 and NiS2 (pyrite structure) [J]. Acta Crystallographica Section B: Structural Science, 1991, 47(5): 650–659. doi: 10.1107/S0108768191004871
[4] MAKOVICKY E. Crystal structures of sulfides and other chalcogenides [J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1): 7–125. doi: 10.2138/rmg.2006.61.2
[5] TEMPLETON D H, DAUBEN C H. The crystal structure of sodium superoxide [J]. Journal of the American Chemical Society, 1950, 72(5): 2251–2254. doi: 10.1021/ja01161a103
[6] KJEKSHUS A, RAKKE T. Preparation and properties of magnesium, copper, zinc and cadmium dichalcogenides [J]. Acta Chemica Scandinavica A, 1979, 33(8): 617–620. doi: 10.3891/acta.chem.scand.33a-0617
[7] KUWAYAMA Y, HIROSE K, SATA N, et al. The pyrite-type high-pressure form of silica [J]. Science, 2005, 309(5736): 923–925. doi: 10.1126/science.1114879
[8] SHIRAKO Y, WANG X, TSUJIMOTO Y, et al. Synthesis, crystal structure, and electronic properties of high-pressure PdF2-type oxides MO2(M= Ru, Rh, Os, Ir, Pt) [J]. Inorganic Chemistry, 2014, 53(21): 11616–11625. doi: 10.1021/ic501770g
[9] YU R, ZHAN Q, DE JONGHE L C. Crystal structures of and displacive transitions in OsN2, IrN2, RuN2, and RhN2 [J]. Angewandte Chemie International Edition, 2007, 46(7): 1136–1140. doi: 10.1002/anie.200604151
[10] HU Q, KIM D Y, YANG W, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
[11] LIU J, HU Q Y, BI W L, et al. Altered chemistry of oxygen and iron under deep Earth conditions [J]. Nature Communications, 2019, 10(1): 153. doi: 10.1038/s41467-018-08071-3
[12] KLEPPE A K, JEPHCOAT A P. High-pressure Raman spectroscopic studies of FeS2 pyrite [J]. Mineralogical Magazine, 2004, 68(3): 433–441. doi: 10.1180/0026461046830196
[13] HARRAN I, CHEN Y Z, WANG H Y, et al. High-pressure induced phase transition of FeS2: electronic, mechanical and thermoelectric properties [J]. Journal of Alloys and Compounds, 2017, 710: 267–273. doi: 10.1016/j.jallcom.2017.03.256
[14] KIMBER S A J, SALAMAT A, EVANS S R, et al. Giant pressure-induced volume collapse in the pyrite mineral MnS2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5106–5110. doi: 10.1073/pnas.1318543111
[15] FUJII T, TANAKA K, MARUMO F, et al. Structural behaviour of NiS2 up to 54 kbar [J]. Mineralogical Journal, 1987, 13(7): 448–454. doi: 10.2465/minerj.13.448
[16] ELGHAZALI M A, NAUMOV P G, MU Q, et al. Pressure-induced metallization, transition to the pyrite-type structure, and superconductivity in palladium disulfide PdS2 [J]. Physical Review B, 2019, 100(1): 014507. doi: 10.1103/PhysRevB.100.014507
[17] HUANG S X, WU X, QIN S. Ultrahigh-pressure phase transitions in FeS2 and FeO2: implications for super-earths' deep interior [J]. Journal of Geophysical Research, 2018, 123(1): 277–284. doi: 10.1002/2017JB014766
[18] BITHER T A, PREWITT C T, GILLSON J L, et al. New transition metal dichalcogenides formed at high pressure [J]. Solid State Communications, 1966, 4(10): 533–535. doi: 10.1016/0038-1098(66)90419-4
[19] MUNSON R A. The synthesis of copper disulfide [J]. Inorganic Chemistry, 1966, 5(7): 1296–1297. doi: 10.1021/ic50041a055
[20] BAYLISS P. Crystal chemistry and crystallography of some minerals within the pyrite group [J]. American Mineralogist, 1989, 74(9/10): 1168–1176.
[21] UEDA H, NOHARA M, KITAZAWA K, et al. Copper pyrites CuS2 and CuSe2 as anion conductors [J]. Physical Review B, 2002, 65(15): 155104. doi: 10.1103/PhysRevB.65.155104
[22] KAKIHANA M, MATSUDA T D, HIGASHINAKA R, et al. Superconducting and fermi surface properties of pyrite-type compounds CuS2 and CuSe2 [J]. Journal of the Physical Society of Japan, 2019, 88(1): 014702. doi: 10.7566/JPSJ.88.014702
[23] KING H E, PREWITT C T. Structure and symmetry of CuS2 (pyrite structure) [J]. American Mineralogist, 1979, 64(11/12): 1265–1271.
[24] MOSSELMANS J F W, PATTRICK R A D, VAN DER LAAN G, et al. X-ray absorption near-edge spectra of transition metal disulfides FeS2 (pyrite and marcasite), CoS2, NiS2 and CuS2, and their isomorphs FeAsS and CoAsS [J]. Physics and Chemistry of Minerals, 1995, 22(5): 311–317. doi: 10.1007/BF00202771
[25] FOLMER J C W, JELLINEK F, CALIS G H M. The electronic structure of pyrites, particularly CuS2 and Fe1- xCuxSe2: an XPS and Mössbauer study [J]. Journal of Solid State Chemistry, 1988, 72(1): 137–144. doi: 10.1016/0022-4596(88)90017-5
[26] TOSSELL J A, VAUGHAN D J, BURDETT J K. Pyrite, marcasite, and arsenopyrite type minerals: crystal chemical and structural principles [J]. Physics and Chemistry of Minerals, 1981, 7(4): 177–184. doi: 10.1007/BF00307263
[27] HÜPEN H, WILL G, HÖFFNER C, et al. X-ray diffraction of CuS2 under high pressure [J]. Materials Science Forum, 1991, 79/80/81/82: 697–702. doi: 10.4028/www.scientific.net/MSF.79-82.697
[28] NIWA K, TERABE T, SUZUKI K, et al. High-pressure stability and ambient metastability of marcasite-type rhodium pernitride [J]. Journal of Applied Physics, 2016, 119(6): 065901. doi: 10.1063/1.4941436
[29] TSE J S, KLUG D D, UEHARA K, et al. Elastic properties of potential superhard phases of RuO2 [J]. Physical Review B, 2000, 61(15): 10029–10034. doi: 10.1103/PhysRevB.61.10029
[30] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
[31] DATCHI F, LETOULLEC R, LOUBEYRE P. Improved calibration of the SrB4O7: Sm2+ optical pressure gauge: advantages at very high pressures and high temperatures [J]. Journal of Applied Physics, 1997, 81(8): 3333–3339. doi: 10.1063/1.365025
[32] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan [J]. High Pressure Research, 1996, 14(4/5/6): 235–248. doi: 10.1080/08957959608201408
[33] GONZALEZ-PLATAS J, ALVARO M, NESTOLA F, et al. EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching [J]. Journal of Applied Crystallography, 2016, 49(4): 1377–1382. doi: 10.1107/S1600576716008050
[34] TOBY B H, VON DREELE R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package [J]. Journal of Applied Crystallography, 2013, 46(2): 544–549. doi: 10.1107/S0021889813003531
[35] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
[36] ECKERT B, SCHUMACHER R, JODL H J, et al. Pressure and photo-induced phase transitions in sulphur investigated by Raman spectroscopy [J]. High Pressure Research, 2000, 17(2): 113–146. doi: 10.1080/08957950008200934
[37] PEIRIS S M, SWEENEY J S, CAMPBELL A J, et al. Pressure-induced amorphization of covellite, CuS [J]. The Journal of Chemical Physics, 1996, 104(1): 11–16. doi: 10.1063/1.470870
[38] ANASTASSAKIS E, PERRY C H. Light scattering and ir measurements in XS2 pryite-type compounds [J]. The Journal of Chemical Physics, 1976, 64(9): 3604–3609. doi: 10.1063/1.432711
[39] VOGT H, CHATTOPADHYAY T, STOLZ H J. Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 and SiP2 [J]. Journal of Physics and Chemistry of Solids, 1983, 44(9): 869–873. doi: 10.1016/0022-3697(83)90124-5
[40] SOURISSEAU C, CAVAGNAT R, FOUASSIER M. The vibrational properties and valence force fields of FeS2, RuS2 pyrites and FeS2 marcasite [J]. Journal of Physics and Chemistry of Solids, 1991, 52(3): 537–544. doi: 10.1016/0022-3697(91)90188-6
[41] THOMPSON E C, CHIDESTER B A, FISCHER R A, et al. Equation of state of pyrite to 80 GPa and 2 400 K [J]. American Mineralogist, 2016, 101(5): 1046–1051. doi: 10.2138/am-2016-5527
[42] BRAZHKIN V V, DZHAVADOV L N, EL'KIN F S. Study of the compressibility of FeSi, MnSi, and CoS2 transition-metal compounds at high pressures [J]. JETP Letters, 2016, 104(2): 99–104. doi: 10.1134/S0021364016140083
[43] YUY G, ROSS N L. Prediction of high-pressure polymorphism in NiS2 at megabar pressures [J]. Journal of Physics: Condensed Matter, 2010, 22(23): 235401. doi: 10.1088/0953-8984/22/23/235401