[1] DUDLEY J D, HALL H T. Experimental fusion curves of indium and tin to 105 000 atmospheres [J]. Physical Review, 1960, 118(5): 1211–1216. doi: 10.1103/PhysRev.118.1211
[2] BARNETT J D, BEAN V E, HALL H T. X-ray diffraction studies on tin to 100 kilobars [J]. Journal of Applied Physics, 1966, 37(2): 875–877. doi: 10.1063/1.1708275
[3] DESGRENIERS S, VOHRA Y K, RUOFF A L. Tin at high pressure: an energy-dispersive X-ray-diffraction study to 120 GPa [J]. Physical Review B, 1989, 39(14): 10359–10361. doi: 10.1103/PhysRevB.39.10359
[4] LIU M, LIU L G. Compressions and phase transitions of tin to half a megabar [J]. High Temperatures-High Pressures, 1986, 18: 79–85.
[5] SERVAS E M. Sound-velocity doppler laser interferometry measurements on tin [C]//Shock Compression of Condensed Matter-2001. Atlanta, GA(USA): American Institute of Physics, 2002, 620: 1200–1203.
[6] CHEONG B H, CHANG K J. First-principles study of the structural properties of tin under pressure [J]. Physical Review B: Condensed Matter, 1991, 44(9): 4103–4108. doi: 10.1103/PhysRevB.44.4103
[7] CORKILL J L, GARCA A, COHEN M L. Erratum: Theoretical study of high-pressure phases of tin [J]. Physical Review B, 1991, 43(11): 9251–9254. doi: 10.1103/PhysRevB.43.9251
[8] CHRISTENSEN N E, METHFESSEL M. Density-functional calculations of the structural properties of tin under pressure [J]. Physical Review B, 1993, 48(9): 5797–5807. doi: 10.1103/PhysRevB.48.5797
[9] RAVELO R, BASKES M. Equilibrium and thermodynamic properties of grey, white, and liquid tin [J]. Physical Review Letters, 1997, 79(13): 2482–2485. doi: 10.1103/PhysRevLett.79.2482
[10] BERNARD S, MAILLET J B. First-principles calculation of the melting curve and hugoniot of tin [J]. Physical Review B, 2002, 66(1): 012103. doi: 10.1103/PhysRevB.66.012103
[11] AGUADO A. First-principles study of elastic properties and pressure-induced phase transitions of Sn: LDA versus GGA results [J]. Physical Review B: Condensed Matter and Materials Physics, 2003, 67(21): 212104. doi: 10.1103/PhysRevB.67.212104
[12] YU C, LIU J, LU H, et al. Ab initio calculation of the properties and pressure induced transition of Sn [J]. Solid State Communications, 2006, 140(11/12): 538–543.
[13] CUI S X, CAI L C, FENG W X, et al. First-principles study of phase transition of tin and lead under high pressure [J]. Physica Status Solidi, 2008, 245(1): 53–57. doi: 10.1002/pssb.200743240
[14] TONKOV E Y, PONYATOVSKY E G. Phase transformations of elements under high pressure [M].Boca Raton, FL: CRC Press, 2005.
[15] ANDERSON W W, CVERNA F, HIXSON R S, et al. Phase transition and spall behavior in β-tin [C]//AIP Conference Proceedings. American Institute of Physics, 2000: 443–446.
[16] MABIRE C, HEREIL P L. Shock induced polymorphic transition and melting of tin [C]//Shock Compression of Condensed Matter-1999. New York: American Institute of Physics, 2000, 505(1): 93–96.
[17] STAGER R A, BALCHAN A S, DRICKMER H G. High-pressure phase transition in metallic tin [J]. Journal of Chemical Physics, 1962, 37(5): 1154–1154.
[18] STROMBERG H D, STEPHENS D R. Effects of pressure on the electrical resistance of certain metals [J]. Journal of Physics and Chemistry of Solids, 1964, 25(9): 1015–1022. doi: 10.1016/0022-3697(64)90039-3
[19] MARTIN J E, SMITH P L. Tin and indium antimonide at very high pressures [J]. British Journal of Applied Physics, 1965, 16(4): 495–500. doi: 10.1088/0508-3443/16/4/313
[20] VABOYA S N, KENNEDY G C. Compressibility of 18 metals to 45 kbar [J]. Journal of Physics and Chemistry of Solids, 1970, 31(10): 2329–2345. doi: 10.1016/0022-3697(70)90247-7
[21] OHTANI A, MIZUKAMI S, KATAYAMA M, et al. Multi-anvil apparatus for high pressure X-ray diffraction [J]. Japanese Journal of Applied Physics, 1977, 16(10): 1843–1848. doi: 10.1143/JJAP.16.1843
[22] MARSH S P. LASL shock hugoniot data [M]. Berkeley: University of California Press, 1980: 141.
[23] CAVALERI M E, PLYMATE T G, STOUT J H. A pressure volume temperature equation of state for Sn (β) by energy dispersive X-ray diffraction in a heated diamond anvil cell [J]. Journal of Physics and Chemistry of Solids, 1988, 49(8): 945–956. doi: 10.1016/0022-3697(88)90012-1
[24] RAYNE J A, CHANDRASEKHAR B S. Elastic constants of β tin from 4.2 K to 300 K [J]. Physical Review, 1960, 120(6): 1658–1663.
[25] KAMIOKA H. Temperature variations of elastic moduli up to eutectic temperature in tin-bismuth alloys [J]. Japanese Journal of Applied Physics, 1983, 22(12): 1805–1809.
[26] HU J B, ZHOU X M, DAI C D, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements [J]. Journal of Applied Physics, 2008, 104(8): 083520. doi: 10.1063/1.3003325
[27] SONG H F, LIU H F, ZHANG G C, et al. Numerical simulation of wave propagation and phase transition of tin under shock-wave loading [J]. Chinese Physics Letters, 2009, 26(6): 066401. doi: 10.1088/0256-307X/26/6/066401
[28] KIEFER B, DUFFY T, UCHIDA T, et al. Melting of tin at high pressures [R]. APS User Activity Report, 2002.
[29] DAVIS J, HAYES D B. Isentropic compression experiments on dynamic solidification in tin [J]. Journal of Membrane Science, 2004, 476(1): 20–29.
[30] HAYES D B. Wave propagation in a condensed medium with N transforming phases: application to solid-I-solid-Ⅱ-liquid bismuth [J]. Journal of Applied Physics, 1975, 46(8): 3438–3443. doi: 10.1063/1.322065
[31] COX G A. A Multi-phase equation of state and strength model for tin [C]//Shock Compression of Condensed Matter-2005. Baltimore, Maryland (USA) : American Institute of Physics, 2006, 845(1): 208–211.
[32] BUY F, VOLTZ C, LLORCA F. Thermodynamically based equation of state for shock wave studies: application to the design of experiments on tin [C]//Shock Compression of Condensed Matter-2005. Baltimore, Maryland (USA): American Institute of Physics, 2006, 845(1): 41–44.
[33] KHISHCHENKO K V. Equation of state and phase diagram of tin at high pressures [J]. Journal of Physics: Conference Series, 2008, 121(2): 022025. doi: 10.1088/1742-6596/121/2/022025
[34] 张林, 李英华, 李雪梅, 等. 锡的βγ两相物态方程 [C]//第六届全国爆炸力学实验技术学术会议, 2010: 301–307.
[35] 种涛, 王桂吉, 谭福利, 等. 磁驱动准等熵压缩下铁的相变 [J]. 中国科学:物理学 力学 天文学, 2014, 44(6): 630–636.

CHONG T, WANG G J, TAN F L, et al. Phase transition of iron under magnetically driven quasi-isentropic compression [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(6): 630–636.
[36] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
[37] HALL C A, ASAY J R, KNUGSON M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading [J]. Review of Scientific Instruments, 2001, 72(9): 3587–3595. doi: 10.1063/1.1394178
[38] STEINBERG D J. Equation of state and strength properties of selected materials [R]. Livermore, California: Lawrence Livermore National Laboratory, 1996.