[1] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics [J]. Materials Today, 2014, 17(4): 163–174. doi: 10.1016/j.mattod.2014.04.003
[2] ZWEBEN C. Advances in composite materials for thermal management in electronic packaging [J]. JOM, 1998, 50(6): 47–51. doi: 10.1007/s11837-998-0128-6
[3] JOHNSON W B, SONUPARLAK B. Diamond/Al metal matrix composites formed by the pressureless metal infiltration process [J]. Journal of Materials Research, 1993, 8(5): 1169–1173. doi: 10.1557/JMR.1993.1169
[4] YANG W L, PENG K, ZHOU L P, et al. Finite element simulation and experimental investigation on thermal conductivity of diamond/aluminium composites with imperfect interface [J]. Computational Materials Science, 2014, 83: 375–380. doi: 10.1016/j.commatsci.2013.11.059
[5] ABYZOV A M, KIDALOV S V, SHAKHOV F M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application [J]. Applied Thermal Engineering, 2012, 48: 72–80. doi: 10.1016/j.applthermaleng.2012.04.063
[6] HE J S, WANG X T, ZHANG Y, et al. Thermal conductivity of Cu–Zr/diamond composites produced by high temperature-high pressure method [J]. Composites Part B: Engineering, 2015, 68: 22–26. doi: 10.1016/j.compositesb.2014.08.023
[7] MA S D, ZHAO N Q, SHI C S, et al. Mo2C coating on diamond: different effects on thermal conductivity of diamond/Al and diamond/Cu composites [J]. Applied Surface Science, 2017, 402: 372–383. doi: 10.1016/j.apsusc.2017.01.078
[8] TAN Z Q, LI Z Q, FAN G L, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties [J]. Composites Part B: Engineering, 2013, 47: 173–180. doi: 10.1016/j.compositesb.2012.11.014
[9] MIZUUCHI K, INOUE K, AGARI Y, et al. Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al-matrix composite fabricated by SPS [J]. Microelectronics Reliability, 2014, 54(11): 2463–2470. doi: 10.1016/j.microrel.2014.04.006
[10] CHE Z F, WANG Q X, WANG L H, et al. Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration [J]. Composites Part B: Engineering, 2017, 113: 285–290. doi: 10.1016/j.compositesb.2017.01.047
[11] ZHANG Y, LI W J, ZHAO L L, et al. Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure [J]. Journal of Materials Science, 2015, 50(2): 688–696. doi: 10.1007/s10853-014-8628-y
[12] FANG C, SHEN W X, ZHANG Y W, et al. Si doping effects on the growth of large single-crystal diamond in a Ni-based metal catalyst system under high pressure and high temperature [J]. Crystal Growth & Design, 2019, 19(7): 3955–3961. doi: 10.1021/acs.cgd.9b00355
[13] ZHANG Z F, JIA X P, LIU X B, et al. Synthesis and characterization of a single diamond crystal with a high nitrogen concentration [J]. Chinese Physics B, 2012, 21(3): 038103. doi: 10.1088/1674-1056/21/3/038103
[14] FANG C, ZHANG Y W, SHEN W X, et al. Synthesis and characterization of HPHT large single-crystal diamonds under the simultaneous influence of oxygen and hydrogen [J]. CrystEngComm, 2017, 19(38): 5727–5734. doi: 10.1039/C7CE01349C
[15] CHANG R, ZANG J B, WANG Y H, et al. Study of Ti-coated diamond grits prepared by spark plasma coating [J]. Diamond and Related Materials, 2017, 77: 72–78. doi: 10.1016/j.diamond.2017.06.004
[16] EKIMOVE A, SUETIN N V, POPOVICH A F, et al. Thermal conductivity of diamond composites sintered under high pressures [J]. Diamond and Related Materials, 2008, 17(4/5): 838–843. doi: 10.1016/j.diamond.2007.12.051
[17] KIDALOV S V, SHAKHOV F M, VUL A Y. Thermal conductivity of sintered nanodiamonds and microdiamonds [J]. Diamond and Related Materials, 2008, 17(4/5): 844–847. doi: 10.1016/j.diamond.2008.01.091
[18] EKIMOVE A, SUETINN V, POPOVICH A F, et al. Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites [J]. Inorganic Materials, 2008, 44(3): 224–229. doi: 10.1134/S0020168508030035
[19] YOSHIDA K, MORIGAMI H. Thermal properties of diamond/copper composite material [J]. Microelectronics Reliability, 2004, 44(2): 303–308. doi: 10.1016/S0026-2714(03)00215-4
[20] HE J S, ZHANG H L, ZHANG Y, et al. Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method [J]. Physica Status Solidi A, 2014, 211(3): 587–594. doi: 10.1002/pssa.201330237
[21] CHEN H, JIA C C, LI S J. Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration [J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(2): 180–186. doi: 10.1007/s12613-013-0711-x
[22] CHU K, JIA C C, LIANG X B, et al. Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance [J]. Materials & Design, 2009, 30(10): 4311–4316. doi: 10.1016/j.matdes.2009.04.019
[23] LIANG X B, JIA C C, CHU K, et al. Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering [J]. Journal of Composite Materials, 2012, 46(9): 1127–1136. doi: 10.1177/0021998311413689
[24] YAMAMOTO Y, IMAI T, TANABE K, et al. The measurement of thermal properties of diamond [J]. Diamond and Related Materials, 1997, 6(8): 1057–1061. doi: 10.1016/S0925-9635(96)00772-8
[25] TWITCHEN D J, PICKLES C S J, COE S E, et al. Thermal conductivity measurements on CVD diamond [J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 731–735. doi: 10.1016/S0925-9635(00)00515-X
[26] STONER R J, MARIS H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J]. Physical Review B, 1993, 48(22): 16373–16387. doi: 10.1103/PhysRevB.48.16373
[27] 王平平. 金刚石/铝复合材料的界面结构与导热性能 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

WANG P P. Interface microstructure and thermal properties of diamond particles reinforced Al matrix composites [D]. Harbin: Harbin Institute of Technology, 2017.
[28] 刘永正. 金刚石/铝复合材料影响因素研究 [J]. 超硬材料工程, 2009, 21(5): 15–17. doi: 10.3969/j.issn.1673-1433.2009.05.005

LIU Y Z. Research on influencing factors of diamond-aluminium composites [J]. Superhard Material Engineering, 2009, 21(5): 15–17. doi: 10.3969/j.issn.1673-1433.2009.05.005
[29] 郭静, 孙久娜, 孙璐, 等. 铝-金刚石双相连续导热复合材料的制备 [J]. 粉末冶金工业, 2010, 20(3): 17–20. doi: 10.3969/j.issn.1006-6543.2010.03.004

GUO J, SUN J N, SUN L, et al. Preparation of Al/diamond composite with consecutive phases [J]. Powder Metallurgy Industry, 2010, 20(3): 17–20. doi: 10.3969/j.issn.1006-6543.2010.03.004
[30] 刘永正, 崔岩. 超高导热金刚石/铝复合材料研究 [C]//第七届中国功能材料及其应用学术会议论文集. 长沙: 中国仪器仪表学会, 2010: 439–441.
[31] ARAI S, UEDA M. Fabrication of high thermal conductivity Cu/diamond composites at ambient temperature and pressure [J]. AIP Advances, 2019, 9(8): 085309. doi: 10.1063/1.5111416
[32] 王新宇, 于家康, 朱晓敏. 镀TiC金刚石/铝复合材料的热膨胀性能 [J]. 特种铸造及有色合金, 2011, 31(11): 1046–1049. doi: 10.3870/tzzz.2011.11.019

WANG X Y, YU J K, ZHU X M. Thermal expansion behevior of TiC-coated diamond/Al composites [J]. Special Casting & Nonferrous Alloys, 2011, 31(11): 1046–1049. doi: 10.3870/tzzz.2011.11.019
[33] 王一鸣. 金刚石/铝复合材料性能及其影响因素研究 [D]. 北京: 北方工业大学, 2019.

WANG Y M. Research on properties and influencing factors of diamond/aluminum composites [D]. Beijing: North China University of Technology, 2019.