[1] Andri S. Dissolution of Primary Minerals of Basalt in Natural Waters: Ⅰ Calculation of Mineral Solubility from 0 ℃ to 350 ℃ [J]. Chemical Geology, 2001, 172: 225-250.
[2] Carrier H, Ye S Y, Vanderbeken I, et al. Salt Solubility under High Pressure and High Temperature [J]. High Temp-High Press, 1998, 30(6): 629-634.
[3] Liu D W, Kang Y L. Laboratory Investigation of Water Sensitivity of Carbonate Reservoirs and Discussion of Its Mechanism [J]. Natural Gas Industry, 2007, 27(2): 3-36. (in Chinese)
[4] 刘大伟, 康毅力. 碳酸盐岩储层水敏性实验评价及机理探讨 [J]. 天然气工程, 2007, 27(2): 3-36.
[5] Wu M, Wu L. Experiment of Controlling the Secondary Precipitation in Acid Gypsum-Containing Formation [J]. Drilling Production Technology, 2004, 27(3): 90-93. (in Chinese)
[6] 吴敏, 吴林. 控制酸化含石膏地层中的二次沉淀实验 [J]. 钻采工艺, 2004, 27(3): 90-93.
[7] Li W D, Wang W B. Problems Worthy of Consideration on the Study of Mesozoic Volcanic-Intrusive in Middle-Lower Yangtze Area [J]. Volcanology Mineral Resources, 1995, 16(2): 1-20. (in Chinese)
[8] 李文达, 王文斌. 长江中下游火山-侵入杂岩研究中值得探讨的几个问题(一) [J]. 火山地质与矿产, 1995, 16(2): 1-20.
[9] Cole W F, Lancucki C J. A Refinement of the Crystal Structure of Gypsum CaSO42H2O [J]. Acta Crystallogphy, 1974, 30: 921-929.
[10] Sherilyn C, Williams S, Josef P. Initiation and Growth of Gypsum Structures in the Zechstein Basin [J]. J Struct Geol, 1997, 19(7): 897-907.
[11] Winkler B, Hennion B. Low Temperature Dynamics of Molecular H2O in Bassanite, Gypsum and Investigated by High Resolution Incoherent Inelastic Neutron Scattering [J]. Phys Chem Miner, 1994, 21: 539.
[12] Zhao J, Zheng H F. Research on Raman Spectra of Calcite at Pressure of 0. 1~800 MPa [J]. Chinese Journal of High Pressure Physics, 2003, 17(3): 226-229. (in Chinese)
[13] 赵金, 郑海飞. 0. 1~800 MPa压力下方解石Raman拉曼的实验研究 [J]. 高压物理学报, 2003, 17(3): 226-229.
[14] Chen J Y, Zheng H F, Zeng Y S, et al. In-Situ Raman Spectroscopic Study of Fluid at High Temperature in Synthetic Inclusion [J]. Spectroscopy and Spectral Analysis, 2003, 23: 726-729. (in Chinese)
[15] 陈晋阳, 郑海飞, 曾贻善, 等. 以合成包裹体为腔体进行高温下流体的拉曼光谱原位分析 [J]. 光谱学与光谱分析, 2003, 23: 726-729.
[16] Yang Y Y, Zheng H F. Research on the Raman Spectra of Gypsum at Pressure of 100~800 MPa and Room Temperature [J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 25-28. (in Chinese)
[17] 杨玉萍, 郑海飞. 常温和100~800 MPa下石膏的拉曼光谱研究 [J]. 高压物理学报, 2006, 20(1): 25-28.
[18] Couty R, Velde B, Besson J M. Raman Spectra of Gypsum under Pressure [J]. Phys Chem Miner, 1983, 10: 89-93.
[19] Knittle E, Phillips W, Williams Q. An Infrared and Raman Spectroscopic Study of Gypsum at High Pressures [J]. Phys Chem Miner, 2001, 28: 630-634.
[20] Sarma L P, Prasad P S R, Ravikumar N. Raman Spectroscopic Study of Phase Transitions in Natural Gypsum [J]. Raman Spectrosc, 1998, 29: 851-856.
[21] Zhou X Z, Zheng H F, Sun Q. In-Situ Raman Spectroscopic Study of Phase Transition at High Temperature and High Pressure [J]. Acta Petrologic Sinica, 2006, 22(12): 3047-2051. (in Chinese)
[22] 周兴志, 郑海飞, 孙樯. 高温高压下石膏脱水相变的原位拉曼光谱研究 [J]. 岩石学报, 2006, 22(12): 3047-3051.
[23] Schmidt C, Ziemann M A. In-Situ Raman Spectroscopy of Quartz: A Pressure Sensor for Hydrothermal Diamond-Anvil Cell Experiments at Elevated Temperatures [J]. Am Mineral, 2000, 85: 1725-1734.
[24] Zheng H F, Sun Q, Zhao J, et al. Comment on the Pressure Gauge for the Experiments at High Temperature and High Pressure with DAC [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 78-82. (in Chinese)
[25] 郑海飞, 孙樯, 赵金, 等. 金刚石压腔高温高压实验的压力标定方法及其现状 [J]. 高压物理学报, 2004, 18(1): 78-82.