[1] HALL E O. The deformation and ageing of mild steel: III discussion of results [J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747–753. doi: 10.1088/0370-1301/64/9/303
[2] PETCH N J. The cleavage strength of polycrystals [J]. Journal of the Iron and Steel Institute, 1953, 174: 25–28.
[3] SOLOZHENKO V L, KURAKEVYCH O O, LE GODEC Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride [J]. Advanced Materials, 2012, 24(12): 1540–1544. doi: 10.1002/adma.201104361
[4] LIU G, KOU Z, YAN X, et al. Submicron cubic boron nitride as hard as diamond [J]. Applied Physics Letters, 2015, 106(12): 121901. doi: 10.1063/1.4915253
[5] TIAN Y, XU B, YU D, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493(7432): 385–388. doi: 10.1038/nature11728
[6] 徐波, 田永君. 纳米孪晶超硬材料的高压合成 [J]. 物理学报, 2017, 66(3): 036201

XU B, TIAN Y J. High pressure synthesis of nanotwinned ultrahard materials [J]. Acta Physica Sinica, 2017, 66(3): 036201
[7] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599–600.
[8] 王海阔, 张相法, 位星, 等. 直接转化法合成大尺寸纯相多晶金刚石 [J]. 金刚石与磨料磨具工程, 2018, 38(1): 1–6

WANG H K, ZHANG X F, WEI X, et al. Synthesizing bulk polycrystalline diamond by method of direct phase transition [J]. Diamond & Abrasives Engineering, 2018, 38(1): 1–6
[9] HUANG Q, YU D, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250. doi: 10.1038/nature13381
[10] EHRE D, GUTMANAS E Y, CHAIM R. Densification of nanocrystalline MgO ceramics by hot-pressing [J]. Journal of the European Ceramic Society, 2005, 25(16): 3579–3585. doi: 10.1016/j.jeurceramsoc.2004.09.023
[11] TANG F, HAGIWARA M, SCHOENUNG J M. Formation of coarse-grained inter-particle regions during hot isostatic pressing of nanocrystalline powder [J]. Scripta Materialia, 2005, 53(6): 619–624. doi: 10.1016/j.scriptamat.2005.05.034
[12] BINNER J, ANNAPOORANI K, PAUL A, et al. Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering [J]. Journal of the European Ceramic Society, 2008, 28(5): 973–977. doi: 10.1016/j.jeurceramsoc.2007.09.002
[13] DAHL P, KAUS I, ZHAO Z, et al. Densification and properties of zirconia prepared by three different sintering techniques [J]. Ceramics International, 2007, 33(8): 1603–1610. doi: 10.1016/j.ceramint.2006.07.005
[14] SALAMON D, KALOUSEK R, MACA K, et al. Rapid grain growth in 3Y-TZP nanoceramics by pressure-assisted and pressure-less SPS [J]. Journal of the American Ceramic Society, 2015, 98(12): 3706–3712. doi: 10.1111/jace.13837
[15] MAZAHERI M, ZAHEDI A M, HEJAZI M M. Processing of nanocrystalline 8 mol% yttria-stabilized zirconia by conventional, microwave-assisted and two-step sintering [J]. Materials Science and Engineering A, 2008, 492(1/2): 261–267.
[16] ZHANG L, WANG Y, LV J, et al. Erratum: materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
[17] YAVETSKIY R P, BAUMER V N, DANYLENKO M I, et al. Transformation-assisted consolidation of Y2O3: Eu3+ nanospheres as a concept to optical nanograined ceramics [J]. Ceramics International, 2014, 40(2): 3561–3569. doi: 10.1016/j.ceramint.2013.09.072
[18] WOLLMERSHAUSER J A, FEIGELSON B N, GORZKOWSKI E P, et al. An extended hardness limit in bulk nanoceramics [J]. Acta Materialia, 2014, 69(5): 9–16.
[19] KEAR B H, COLAIZZI J, MAYO W E, et al. On the processing of nanocrystalline and nanocomposite ceramics [J]. Scripta Materialia, 2001, 44(8/9): 2065–2068.
[20] LIAO S C, COLAIZZI J, CHEN Y, et al. Refinement of nanoscale grain structure in bulk titania via a transformation-assisted consolidation (TAC) method [J]. Journal of the American Ceramic Society, 2000, 83(9): 2163–2169.
[21] LIAO S C, CHEN Y J, MAYO W E, et al. Transformation-assisted consolidation of bulk nanocrystalline TiO2 [J]. Nanostructured Materials, 1999, 11(4): 553–557. doi: 10.1016/S0965-9773(99)00344-X
[22] LIAO S C, PAE K D, MAYO W E. Retention of nanoscale grain size in bulk sintered materials via a pressure-induced phase transformation [J]. Nanostructured Materials, 1997, 8(6): 645–656. doi: 10.1016/S0965-9773(97)00227-4
[23] LIAO S C, PAE K D, MAYO W E. High pressure and low temperature sintering of bulk nanocrystalline TiO2 [J]. Materials Science and Engineering A, 1995, 204(1/2): 152–159.
[24] DENRY I, KELLY J R. State of the art of zirconia for dental applications [J]. Dental Materials, 2008, 24(3): 299–307. doi: 10.1016/j.dental.2007.05.007
[25] RÜHLE M. Microscopy of structural ceramics [J]. Advanced Materials, 1997, 9(3): 195–217. doi: 10.1002/adma.19970090304
[26] YASHIMA M, HIROSE T, KAKIHANA M, et al. Size and charge effects of dopant M on the unit-cell parameters of monoclinic zirconia solid solutions Zr0.98M0.02O2-δ (M= Ce, La, Nd, Sm, Y, Er, Yb, Sc, Mg, Ca) [J]. Journal of the American Ceramic Society, 1997, 80(1): 171–175. doi: 10.1111/j.1151-2916.1997.tb02806.x
[27] DENRY I, KELLY J R. Emerging ceramic-based materials for dentistry [J]. Journal of Dental Research, 2014, 93(12): 1235–1242. doi: 10.1177/0022034514553627
[28] PORTER D L, HEUER A H. Mechanisms of toughening partially stabilized zirconia (PSZ) [J]. Journal of the American Ceramic Society, 1977, 60(3/4): 183–184.
[29] WHITNEY E D. Effect of pressure on monoclinic-tetragonal transition of zirconia: thermodynamics [J]. Journal of the American Ceramic Society, 1962, 45(12): 612–613. doi: 10.1111/jace.1962.45.issue-12
[30] WHITNEY E D. Electrical resistivity and diffusionless phase transformations of zirconia at high temperatures and ultrahigh pressures [J]. Journal of the Electrochemical Society, 1965, 112(1): 91–94. doi: 10.1149/1.2423476
[31] VAHLDIEK F W, ROBINSON L B, LYNCH C T. Tetragonal zirconium oxide prepared under high pressure [J]. Science, 1963, 142(3595): 1059–1060. doi: 10.1126/science.142.3595.1059
[32] KULCINSKI G L. High-pressure induced phase transition in ZrO2 [J]. Journal of the American Ceramic Society, 1968, 51(10): 582–583. doi: 10.1111/jace.1968.51.issue-10
[33] ALZYAB B, PERRY C H, INGEL R P. High-pressure phase transitions in zirconia and yttria-doped zirconia [J]. Journal of the American Ceramic Society, 1987, 70(10): 760–765. doi: 10.1111/jace.1987.70.issue-10
[34] RHODES W H. Agglomerate and particle size effects on sintering yttria-stabilized zirconia [J]. Journal of the American Ceramic Society, 1981, 64(1): 19–22. doi: 10.1111/jace.1981.64.issue-1
[35] MAGLIA F, TREDICI I G, ANSELMI-TAMBURINI U. Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50 nm [J]. Journal of the European Ceramic Society, 2013, 33(6): 1045–1066. doi: 10.1016/j.jeurceramsoc.2012.12.004
[36] 王海阔, 任瑛, 贺端威, 等. 六面顶压机立方压腔内压强的定量测量及受力分析 [J]. 物理学报, 2017, 66(9): 090702

WANG H K, REN Y, HE D W, et al. Force analysis and pressure quantitative measurement for the high pressure cubic cell [J]. Acta Physica Sinica, 2017, 66(9): 090702
[37] ANDERSSON G, SUNDQVIST B, BÄCKSTRÖM G. A high-pressure cell for electrical resistance measurements at hydrostatic pressures up to 8 GPa: results for Bi, Ba, Ni, and Si [J]. Journal of Applied Physics, 1989, 65(10): 3943–3950. doi: 10.1063/1.343360
[38] 王海阔, 贺端威, 许超, 等. 基于国产铰链式六面顶压机的大腔体静高压技术研究进展 [J]. 高压物理学报, 2013, 27(5): 633–661

WANG H K, HE D W, XU C, et al. Development of large volume-high static pressure techniques based on the hinge-type cubic presses [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633–661
[39] 陈晓芳, 贺端威, 王福龙, 等. 基于铰链式六面顶压机的二级6-8模超高压大腔体内置加热元件的设计与温度标定 [J]. 高压物理学报, 2009, 23(2): 98–104 doi: 10.3969/j.issn.1000-5773.2009.02.004

CHEN X F, HE D W, WANG F L, et al. Design and temperature calibration for heater cell of split-sphere high pressure apparatus based on the hinge-type cubic-anvil Press [J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 98–104 doi: 10.3969/j.issn.1000-5773.2009.02.004
[40] TORAYA H, YOSHIMURA M, SOMIYA S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction [J]. Journal of the American Ceramic Society, 1984, 67(6): C-119–C-121.
[41] KROGSTAD J A, LEPPLE M, GAO Y, et al. Effect of yttria content on the zirconia unit cell parameters [J]. Journal of the American Ceramic Society, 2011, 94(12): 4548–4555. doi: 10.1111/j.1551-2916.2011.04862.x
[42] IGAWA N, ISHII Y, NAGASAKI T, et al. Crystal structure of metastable tetragonal zirconia by neutron powder diffraction study [J]. Journal of the American Ceramic Society, 1993, 76(10): 2673–2676. doi: 10.1111/jace.1993.76.issue-10
[43] MICHEL D, MAZEROLLES L, JORBA M P Y. Fracture of metastable tetragonal zirconia crystals [J]. Journal of Materials Science, 1983, 18(9): 2618–2628. doi: 10.1007/BF00547578