[1] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541-547.
[2] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
[3] ALVES M, JONES N. Influence of hydrostatic stress on failure of axisymmetric notched specimens [J]. Journal of the Mechanics & Physics of Solids, 1999, 47(3): 643–667.
[4] BØRVIK T, HOPPERSTAD O S, BERSTAD T. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part II. numerical study [J]. European Journal of Mechanics A/Solids, 2003, 22(1): 15–32. doi: 10.1016/S0997-7538(02)00005-0
[5] BAO Y, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81–98. doi: 10.1016/j.ijmecsci.2004.02.006
[6] WIERZBICKI T, BAO Y, LEE Y W. Calibration and evaluation of seven fracture models [J]. International Journal of Mechanical Sciences, 2005, 47(4): 719–743.
[7] XUE L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading [J]. International Journal of Solids and Structures, 2007, 44(16): 5163–5181. doi: 10.1016/j.ijsolstr.2006.12.026
[8] BAI Y, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence [J]. International Journal of Plasticity, 2008, 24(6): 1071–1096. doi: 10.1016/j.ijplas.2007.09.004
[9] BAI Y, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture [J]. International Journal of Fracture, 2010, 161(1): 1–20. doi: 10.1007/s10704-009-9422-8
[10] CHOCRON S, ERICE B, ANDERSON C E. A new plasticity and failure model for ballistic application [J]. International Journal of Impact Engineering, 2011, 38(8): 755–764.
[11] BRÜNIG M, CHYRA O, ALBRECHT D. A ductile damage criterion at various stress triaxialities [J]. International Journal of Plasticity, 2008, 24: 1731–1755. doi: 10.1016/j.ijplas.2007.12.001
[12] MALCHER L, PIRES F M A, SÁ J M A C D. An extended GTN model for ductile fracture under high and low stress triaxiality [J]. International Journal of Plasticity, 2014, 54(2): 193–228.
[13] RICE J R, TRACEY D. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics & Physics of Solids, 1969, 17(3): 201–217.
[14] BAO Y. Prediction of ductile crack formation in uncracked bodies [D]. Boston, Massachusetts: Massachusetts Institute of Technology, 2003.
[15] BAI Y, TENG X, WIERZBICKI T. On the application of stress triaxiality formula for plane strain fracture testing [J]. Journal of Engineering Materials and Technology, 2009, 131(2): 021002. doi: 10.1115/1.3078390
[16] ERICE B, GÁLVEZ F. A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion [J]. International Journal of Solids and Structures, 2014, 51(1): 93–110. doi: 10.1016/j.ijsolstr.2013.09.015
[17] ERICE B, PÉREZ-MARTÍN M, GÁLVEZ F. An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy [J]. International Journal of Impact Engineering, 2014, 69: 11–24. doi: 10.1016/j.ijimpeng.2014.02.007
[18] ALGARNI M, BAI Y, YOUNGSIK C. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture [J]. Engineering Fracture Mechanics, 2015, 147: 140–157. doi: 10.1016/j.engfracmech.2015.08.007