[1] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥:中国科学技术大学出版社, 2017: 7-9, 111-113.
[2] 经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999: 7-26.
[3] BECKER R. Effects of crystal plasticity on materials loaded at high pressures and strain rates [J]. International Journal of Plasticity, 2004, 20(11): 1983–2006. doi: 10.1016/j.ijplas.2003.09.002
[4] DE S, ZAMIRI A R. A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX [J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 287–301. doi: 10.1016/j.jmps.2013.10.012
[5] GILMAN J J. Plastic anisotropy of LiF and other rocksalt-type crystals [J]. Acta Metallurgica, 1959, 7(9): 608–613. doi: 10.1016/0001-6160(59)90130-0
[6] ASAY J R, FOWLES G R, DURALL G E, et al. Effects of point defects on elastic precursor decay in LiF [J]. Journal of Applied Physics, 1972, 43(5): 2132–2145. doi: 10.1063/1.1661464
[7] ROSENBERG G, DUVALL G E. Precursor amplitudes in LiF from shocks propagating in <111> directions [J]. Journal of Applied Physics, 1980, 51(1): 319–330. doi: 10.1063/1.327375
[8] WINEY J M, GUPTA Y M. Nonlinear anisotropic description for the thermomechanical response of shocked single crystals: inelastic deformation [J]. Journal of Applied Physics, 2006, 99(2): 023510. doi: 10.1063/1.2161414
[9] ASARO R J. Micromechanics of crystals and polycrystals [J]. Advances in Applied Mechanics, 1983, 23(8): 1–115.
[10] HOGER A. The stress conjugate to logarithmic strain [J]. International Journal of Solids and Structures, 1987, 23(12): 1645–1656. doi: 10.1016/0020-7683(87)90115-6
[11] 黄克智. 固体本构关系 [M]. 北京: 清华大学出版社, 1999: 205-208.
[12] LEMAITRE J, CHABOCHE J L. Mechanics of solids materials [M]. Cambrige: Cambridge University Press, 1990: 311-313.
[13] ASARO R J, RICE J R. Strain localization in ductile single crystals [J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309–338. doi: 10.1016/0022-5096(77)90001-1
[14] KUMAR A, HAUSER F E, DORN J E. Viscous drag on dislocations in aluminum at high strain rates [J]. Acta Metallurgica, 1968, 16(9): 1189–1197. doi: 10.1016/0001-6160(68)90054-0
[15] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
[16] NEMAT-NASSER S, GUO W G, KIHL D P. Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1823–1846. doi: 10.1016/S0022-5096(00)00069-7
[17] 李雪梅, 俞宇颖, 张林, 等. <100>LiF的低压冲击响应和1 550 nm波长下的窗口速度修正 [J]. 物理学报, 2012, 61(15): 156202 doi: 10.7498/aps.61.156202

LI X M, YU Y Y, ZHANG L, et al. Elastic-plastic response of shocked (100) LiF and its window correction at 1 550 nm wavelength [J]. Acta Physica Sinica, 2012, 61(15): 156202 doi: 10.7498/aps.61.156202
[18] ASAY J R, HICKS D L, HOLDRIDGE D B. Comparison of experimental and calculated elastic-plastic wave profiles in LiF [J]. Journal of Applied Physics, 1975, 46(10): 4316–4322. doi: 10.1063/1.321454
[19] MILLER R A, SMITH C S. Pressure derivatives of the elastic constants of LiF and NaF [J]. Journal of Physics and Chemistry of Solids, 1964, 25(12): 1279–1292. doi: 10.1016/0022-3697(64)90043-5
[20] 于锦泉, 肖亚斌, 周显明, 等. 冲击压缩下单晶 LiF 高压声速及卸载路径研究 [J]. 高压物理学报, 2005, 19(3): 206–212 doi: 10.3969/j.issn.1000-5773.2005.03.003

YU J Q, XIAO Y B, ZHOU X M, et al. Study on sound velocity and unloading path for single crystal LiF under shock compression [J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 206–212 doi: 10.3969/j.issn.1000-5773.2005.03.003
[21] ANDERSSON S, BACKSTROM G. Thermal conductivity and heat capacity of single-crystal LiF and CaF2 under hydrostatic pressure [J]. Journal of Physics C: Solid State Physics, 1987, 20(35): 5951. doi: 10.1088/0022-3719/20/35/011
[22] NELDER J A, MEAD R. A simplex method for function minimization [J]. The Computer Journal, 1965, 7(4): 308–313. doi: 10.1093/comjnl/7.4.308
[23] YAO S L, PEI X Y, YU J D, et al. A dislocation-based explanation of quasi-elastic release in shock-loaded aluminum [J]. Journal of Applied Physics, 2017, 121(3): 035101. doi: 10.1063/1.4974055
[24] NEWTON M D, O'KEEFFE M, GIBBS G V. Ab initio calculation of interatomic force constants in H6Si2O7 and the bulk modulus of α quartz and α cristobalite [J]. Physics and Chemistry of Minerals, 1980, 6(4): 305–312. doi: 10.1007/BF00307620
[25] GRAHAM R A. Shock-wave compression of x-cut quartz as determined by electrical response measurements [J]. Journal of Physics and Chemistry of Solids, 1974, 35(3): 355–372. doi: 10.1016/S0022-3697(74)80029-6
[26] RAMMO N N, FARID S B. Thermal expansion coefficients and Grüneisen parameters of quartz at high temperature by X-ray method [J]. Powder Diffraction, 1994, 9(2): 148–150. doi: 10.1017/S0885715600014147
[27] MEADE C, JEANLOZ R. Frequency-dependent equation of state of fused silica to 10 GPa [J]. Physical Review B, 1987, 35(1): 236. doi: 10.1103/PhysRevB.35.236
[28] BOGARDUS E H. Third-order elastic constants of Ge, MgO, and fused SiO2 [J]. Journal of Applied Physics, 1965, 36(8): 2504–2513. doi: 10.1063/1.1714520
[29] JOHNSON J N, JONES O E, MICHAELS T E. Dislocation dynamics and single-crystal constitutive relations: shock-wave propagation and precursor decay [J]. Journal of Applied Physics, 1970, 41(6): 2330–2339. doi: 10.1063/1.1659227
[30] DING J L, ASAY J R, AO T. Modeling of the elastic precursor behavior and dynamic inelasticity of tantalum under ramp wave loading to 17 GPa [J]. Journal of Applied Physics, 2010, 107(8): 083508. doi: 10.1063/1.3373388