[1] KRISHNAKUMAR S. Fiber metal laminates-the synthesis of metals and composites [J]. Material and Manufacturing Process, 1994, 9(2): 295–354. doi: 10.1080/10426919408934905
[2] VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1–5. doi: 10.1016/S0924-0136(00)00411-8
[3] VILLANUEVA G R. Processing and characterisation of the mechanical properties of novel fibre-metal laminates [D]. Liverpool: University of Liverpool, 2002.
[4] VILLANUEVA G R, CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures [J]. Composites Science and Technology, 2004, 64(1): 35–54. doi: 10.1016/S0266-3538(03)00197-0
[5] CANTWELL W J. The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene [J]. Composites Science and Technology, 2000, 60(7): 1085–1094. doi: 10.1016/S0266-3538(00)00002-6
[6] 陈琪, 关志东, 黎增山. GLARE层板性能研究进展 [J]. 科技导报, 2013, 31(7): 50–56

CHEN Q, GUAN Z D, LI Z S. Review of GLARE technology [J]. Science & Technology Review, 2013, 31(7): 50–56
[7] CHAI G B, MANIKANDAN P. Low velocity impact response of fibre-metal laminates-a review [J]. Composite Structures, 2014, 107(3): 363–381.
[8] LANGDON G S, NURICK G N, KARAGIOZOVA D, et al. Fiber-metal laminate panels subjected to blast loading [M]//Dynamic Failure of Materials and Structures. Boston: Springer, 2009: 269-296.
[9] SOUTIS C, MOHAMED G, HODZIC A. Modelling the structural response of GLARE panels to blast load [J]. Composite Structures, 2011, 94(1): 267–276. doi: 10.1016/j.compstruct.2011.06.014
[10] MOHAMED G F A, SOUTIS C, HODZIC A. Blast resistance and damage modelling of fibre metal laminates to blast loads [J]. Applied Composite Materials, 2012, 19(3/4): 619–636.
[11] LEMANSKI S L, NURICK G N, LANGDON G S, et al. Behaviour of fibre metal laminates subjected to localised blast loading-Part II: quantitative analysis [J]. International Journal of Impact Engineering, 2007, 34(7): 1223–1245. doi: 10.1016/j.ijimpeng.2006.05.009
[12] LANGDON G S, LEMANSKI S L, NURICK G N, et al. Behaviour of fibre-metal laminates subjected to localised blast loading: Part I-experimental observations [J]. International Journal of Impact Engineering, 2007, 34(7): 1202–1222. doi: 10.1016/j.ijimpeng.2006.05.008
[13] FLEISHER H J. Design and explosive testing of a blast resistant luggage container [J]. Structures under Shock & Impact IV, 1996.
[14] BIKAKIS G S E, DIMOU C D, SIDERIDIS E P. Ballistic impact response of fiber-metal laminates and monolithic metal plates consisting of different aluminum alloys [J]. Aerospace Science and Technology, 2017, 69: 201–208. doi: 10.1016/j.ast.2017.06.028
[15] YAGHOUBI A S, LIAW B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: experimental and numerical studies [J]. Composite Structures, 2012, 94(8): 2585–2598. doi: 10.1016/j.compstruct.2012.03.004
[16] SITNIKOVA E, GUAN Z W, SCHLEYER G K, et al. Modelling of perforation failure in fibre metal laminates subjected to high impulsive blast loading [J]. International Journal of Solids and Structures, 2014, 51(18): 3135–3146. doi: 10.1016/j.ijsolstr.2014.05.010
[17] 古兴瑾, 许希武. 纤维增强复合材料层板高速冲击损伤数值模拟 [J]. 复合材料学报, 2012, 29(1): 150–161

GU X J, XU X W. Numerical simulation of high speed impact damage of fiber reinforced composite laminates [J]. Journal of Composite Materials, 2012, 29(1): 150–161
[18] 马小敏. 芳纶纤维层合板的冲击力学行为 [D]. 太原: 太原理工大学, 2015.
[19] LI X, YAHYA M Y, BASSIRI NIA A, et al. Dynamic failure of fibre-metal laminates under impact loading-experimental observations [J]. Journal of Reinforced Plastics and Composites, 2016, 35(4): 305–319. doi: 10.1177/0731684415616501
[20] 敬霖, 王志华, 赵隆茂. 爆炸荷载作用下结构冲量的测量 [J]. 实验力学, 2009, 24(2): 151–156

JING L, WANG Z H, ZHAO L M. Measurement of impulse acted on a structure subjected to blast loading [J]. Journal of Experimental Mechanics, 2009, 24(2): 151–156