[1] PIEKUTOWSKI A J. Formation and description of debris clouds produced by hypervelocity impact: NASA Contractor Report 4707 [R]. USA: Marshall Space Flight Center, 1996.
[2] POORMON K L, PIEKUTOWSKI A J. Comparisons of cadmium and aluminum debris clouds [J]. International Journal of Impact Engineering, 1995, 17(4/5/6): 639–648.
[3] SCHMIDT R M, HOUSEN K R, PIEKUTOWSKI A J, et al. Cadmium simulation of orbital-debris shield performance to scaled velocities of 18 km/s [J]. Journal of Spacecraft and Rockets, 1994, 31(5): 866–877. doi: 10.2514/3.26525
[4] 唐蜜. 基于欧拉方法的超高速撞击程序研制及碎片云物相分布数值模拟[D]. 绵阳: 中国工程物理研究院, 2015: 3–8.
[5] MA S, ZHANG X, QIU X M. Comparison study of MPM and SPH in modeling hypervelocity impact problems [J]. International Journal of Impact Engineering, 2009, 36(2): 272–282. doi: 10.1016/j.ijimpeng.2008.07.001
[6] 张雄, 廉艳平, 刘岩, 等.物质点法 [M]. 北京: 清华大学出版社, 2013: 46–50.
[7] 汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 2版. 北京: 高等教育出版社, 2008: 159–167.
[8] 李依潇, 王生捷. 使用新型物态方程的超高速碰撞物质点法模拟 [J/OL]. 爆炸与冲击 [2019-01-29]. http://kns.cnki.net/kcms/detail/51.1148.O3.20181203.1126.006.html.

LI Y X, WANG S J. Simulation of hypervelocity impact by the material point method coupled with a new equation of state [J/OL]. Explosion and Shock Waves [2019–01–29]. http://kns.cnki.net/kcms/detail/51.1148.O3.20181203.1126.006.html.
[9] MULLIN S A, ANDERSON JR C E, WILBECK J S. Dissimilar material velocity scaling for hypervelocity impact [J]. International Journal of Impact Engineering, 2003, 29: 469–485. doi: 10.1016/j.ijimpeng.2003.09.043
[10] ROYCE E B. GRAY, a three-phase equation of state for metals: UCRL-51121 [R]. USA: Lawrence Livermore National Laboratory, 1971.