[1] 蒋志刚, 曾首义, 周建平. 刚性尖头弹侵彻贯穿金属薄靶板耗能分析 [J]. 兵工学报, 2004, 25(6): 777–781. doi: 10.3321/j.issn:1000-1093.2004.06.028

JIANG Z G, ZENG S Y, ZHOU J P. Analysis on energy dissipation of thin metallic plates struck by rigid sharp-nosed projectiles [J]. Acta Armamentarii, 2004, 25(6): 777–781. doi: 10.3321/j.issn:1000-1093.2004.06.028
[2] 宋殿义, 蒋志刚, 曾首义. 刚性尖头弹垂直撞击金属靶板耗能分析 [J]. 弹道学报, 2005, 17(2): 28–32. doi: 10.3969/j.issn.1004-499X.2005.02.006

SONG D Y, JIANG Z G, ZENG S Y. Analysis on energy absorption of metallic targets struck by rigid sharp-nosed projectiles [J]. Journal of Ballistics, 2005, 17(2): 28–32. doi: 10.3969/j.issn.1004-499X.2005.02.006
[3] 贾光辉, 张国伟, 裴思行. 钨球侵彻薄靶板的实验研究 [J]. 兵工学报, 1998, 19(2): 185–188.

JIA G H, ZHANG G W, PEI S X. Experiment study on tungsten spheres penetrate thin target [J]. Acta Armamentarii, 1998, 19(2): 185–188.
[4] 陈小伟, 张方举, 梁斌, 等. A3钢钝头弹撞击45钢板破坏模式的试验研究 [J]. 爆炸与冲击, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002

CHEN X W, ZHANG F J, LIANG B, et al. Three modes of penetration mechanics of A3 steel cylindrical projectiles impact onto 45 steel plates [J]. Explosion and Shock waves, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002
[5] LIANG C C, YANG M F, WU P W, et al. Resistant performance of perforation of multi-layered targets using an estimation procedure with marine application [J]. Ocean Engineering, 2005, 32(3/4): 441–468.
[6] 任善良, 文鹤鸣, 周琳. 平头弹穿透接触式双层金属板的理论研究 [J]. 高压物理学报, 2018, 32(3): 035103.

REN S L, WEN H M, ZHOU L. Theoretical study of the perforation of double-layered metal targets without spacing struck by flat-ended projectiles [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035103.
[7] 肖毅华, 董晃晃, 周建民. 平头弹正侵彻单层和多层钢靶的SPH模拟和解析分析 [J]. 振动与冲击, 2018, 37(19): 166–173, 210.

XIAO Y H, DONG H H, ZHOU J M. SPH simulation and analytical analysis for blunt projectiles normally penetrating into mono-layer and multi-layer steel targets [J]. Journal of Vibration and Shock, 2018, 37(19): 166–173, 210.
[8] CORRAN R S J, SHADBOLT P J, RUIZ C. Impact loading of plates: an experimental investigation [J]. International Journal of Impact Engineering, 1983, 1(1): 3–22. doi: 10.1016/0734-743X(83)90010-6
[9] 邓云飞, 张伟, 曹宗胜, 等. 叠层顺序对双层A3钢薄板抗侵彻性能的影响 [J]. 爆炸与冲击, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007

DENG Y F, ZHANG W, CAO Z S, et al. Influences of layer order on ballistic resistance of double-layered thin A3 steel plates [J]. Explosion and Shock Waves, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007
[10] GUPTA N K, IQBAL M A, SEKHON G S. Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates [J]. International Journal of Impact Engineering, 2006, 35(1): 37–60.
[11] DEY S, BORVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates: an experimental and numerical investigation [J]. International Journal of Solids and Structures, 2007, 44(20): 6701–6723. doi: 10.1016/j.ijsolstr.2007.03.005
[12] 郑超, 朱秀荣, 辛海鹰, 等. 厚度和层间界面对Ti6Al4V钛合金抗弹性能的影响 [J]. 稀有金属材料与工程, 2019, 48(1): 242–248.

ZHENG C, ZHU X R, XIN H Y, et al. Effects of target thickness and macroscopic interface on the ballistic performance of Ti6Al4V titanium alloy [J]. Rare Metal Materials and Engineering, 2019, 48(1): 242–248.
[13] 赵国志. 穿甲工程力学 [M]. 北京: 兵器工业出版社, 1992: 64–65.

ZHAO G Z. Penetration engineering mechanics [M]. Beijing: Ordnance Industry Press, 1992: 64–65.
[14] 郭伟国, 李玉龙, 索涛. 应力波基础简明教程 [M]. 西安: 西北工业大学出版社, 2007: 7–8.

GUO W G, LI Y L, SUO T. Concise course on stress wave [M]. Xi’an: Northwestern Polytechnical University Press, 2007: 7–8.
[15] 马晓青, 韩峰. 高速碰撞动力学 [M]. 北京: 国防工业出版社, 1998: 240–244.

MA X Q, HAN F. High speed collision dynamics [M]. Beijing: National Defense Industry Press, 1998: 240–244.
[16] 周楠, 王金相, 谢君, 等. 球形弹丸作用下钢/铝爆炸复合靶的抗侵彻性能计算与分析 [J]. 高压物理学报, 2013, 27(6): 839–846. doi: 10.11858/gywlxb.2013.06.008

ZHOU N, WANG J X, XIE J, et al. Calculation and analysis for the anti-penetration performance of explosively welded steel/aluminum plates target by the penetration of spherical projectile [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 839–846. doi: 10.11858/gywlxb.2013.06.008
[17] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceeding of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541–547.
[18] COWPER G R, SYMONDS P S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams [R]. Providence: Brown University, 1957.
[19] 余同希, 薛璞. 工程塑性力学 [M]. 北京: 高等教育出版社, 2010: 233–236.

YU T X, XUE P. Plasticity in engineering [M]. Beijing: Higher Education Press, 2010: 233–236.
[20] 丁发兴, 余志武, 温海林. 高温后Q235钢材力学性能试验研究 [J]. 建筑材料学报, 2006, 9(2): 245–249. doi: 10.3969/j.issn.1007-9629.2006.02.022

DING F X, YU Z W, WEN H L. Experimental research on mechanical properties of Q235 steel after high temperature treatment [J]. Journal of Building Materials, 2006, 9(2): 245–249. doi: 10.3969/j.issn.1007-9629.2006.02.022
[21] 张修路, 罗雰, 郭志成, 等. 高压下钨弹性和热力学性质的第一性原理研究 [J]. 原子与分子物理学报, 2015, 32(3): 512–518. doi: 10.3969/j.issn.1000-0364.2015.03.028

ZHANG X L, LUO F, GUO Z C, et al. Ab initio calculation of elastic and thermodynamic properties of W under high pressure [J]. Journal of Atomic and Molecular Physics, 2015, 32(3): 512–518. doi: 10.3969/j.issn.1000-0364.2015.03.028
[22] 陈俊岭, 舒文雅, 李金威. Q235钢材在不同应变率下力学性能的试验研究 [J]. 同济大学学报(自然科学版), 2016, 44(7): 1071–1075. doi: 10.11908/j.issn.0253-374x.2016.07.014

CHEN J L, SHU W Y, LI J W. Experimental study on dynamic mechanical property of Q235 steel at different strain rates [J]. Journal of Tongji University (Natural Science), 2016, 44(7): 1071–1075. doi: 10.11908/j.issn.0253-374x.2016.07.014
[23] 王若林. 钢结构原理 [M]. 南京: 东南大学出版社, 2016: 37–38.

WANG R L. Principles of steel structure [M]. Nanjing: Southeast University Press, 2016: 37–38.