[1] WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
[2] ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748
[3] BABAEV E, SUDBØ A, ASHCROFT N W. A superconductor to superfluid phase transition in liquid metallic hydrogen [J]. Nature, 2004, 431(7009): 666–668. doi: 10.1038/nature02910
[4] LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
[5] EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x
[6] DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
[7] EREMETS M I, TROYAN I A. Conductive dense hydrogen [J]. Nature Materials, 2011, 10(12): 927. doi: 10.1038/nmat3175
[8] EREMETS M I, DROZDOV A P. Comments on: the claimed observation of the Wigner-Huntington transition to metallic hydrogen [EB/OL]. arXiv: 1702.05125v1, [2020-03-03]. https://www.researchgate.net/publication/313844817.
[9] GONCHAROV A F, STRUZHKIN V V. Comment on “observation of the Wigner-Huntington transition to metallic hydrogen” [J]. Science, 2017, 357(6353): eaam9736. doi: 10.1126/science.9736
[10] LIU X D, DALLADAY-SIMPSON P, HOWIE R T, et al. Comment on “observation of the Wigner-Huntington transition to metallic hydrogen” [J]. Science, 2017, 357(6353): eaan2286. doi: 10.1126/science.2286
[11] LOUBEYRE P, OCCELLI F, DUMAS P. Comment on: observation of the Wigner-Huntington transition to metallic hydrogen [EB/OL]. arXiv: 1702.07192, [2020-03-03].
[12] SILVERA I F, DIAS R. Comment on: observation of a first order phase transition to metal hydrogen near 425 GPa [EB/OL]. arXiv: 1907.03198, [2020-03-03]. https://www.ncbi.nlm.nih.gov/pubmed/28839044.
[13] GENG H Y. Public debate on metallic hydrogen to boost high pressure research [J]. Matter and Radiation at Extremes, 2017, 2(6): 275–277. doi: 10.1016/j.mre.2017.10.001
[14] GREGORYANZ E. Everything you always wanted to know about metallic hydrogen but were afraid to ask [J]. Matter and Radiation at Extremes(In Press), 2020.
[15] HEMLEY R J, MAO H K. Phase transition in solid molecular hydrogen at ultrahigh pressures [J]. Physical Review Letters, 1988, 61(7): 857–860. doi: 10.1103/PhysRevLett.61.857
[16] GONCHAROV A F, GREGORYANZ E, HEMLEY R J, et al. Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(25): 14234–14237. doi: 10.1073/pnas.201528198
[17] LOUBEYRE P, OCCELLI F, LETOULLEC R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen [J]. Nature, 2002, 416(6881): 613–617. doi: 10.1038/416613a
[18] HOWIE R T, GUILLAUME C L, SCHELER T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Physical Review Letters, 2012, 108(12): 125501. doi: 10.1103/PhysRevLett.108.125501
[19] HOWIE R T, SCHELER T, GUILLAUME C L, et al. Proton tunneling in phase IV of hydrogen and deuterium [J]. Physical Review B, 2012, 86(21): 214104. doi: 10.1103/PhysRevB.86.214104
[20] LOUBEYRE P, OCCELLI F, DUMAS P. Hydrogen phase IV revisited via synchrotron infrared measurements in H2 and D2 up to 290 GPa at 296 K [J]. Physical Review B, 2013, 87(13): 134101. doi: 10.1103/PhysRevB.87.134101
[21] ZHA C S, COHEN R E, MAO H K, et al. Raman measurements of phase transitions in dense solid hydrogen and deuterium to 325 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4792–4797. doi: 10.1073/pnas.1402737111
[22] DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164
[23] ZHA C S, LIU H Y, TSE J S, et al. Melting and high P-T transitions of hydrogen up to 300 GPa [J]. Physical Review Letters, 2017, 119(7): 075302. doi: 10.1103/PhysRevLett.119.075302
[24] GONCHAROV A F, CHUVASHOVA I, JI C, et al. Intermolecular coupling and fluxional behavior of hydrogen in phase IV [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(51): 25512–25515. doi: 10.1073/pnas.1916385116
[25] GONCHAROV A F, TSE J S, WANG H, et al. Bonding, structures, and band gap closure of hydrogen at high pressures [J]. Physical Review B, 2013, 87(2): 024101. doi: 10.1103/PhysRevB.87.024101
[26] ZHA C S, LIU Z X, HEMLEY R J. Synchrotron infrared measurements of dense hydrogen to 360 GPa [J]. Physical Review Letters, 2012, 108(14): 146402. doi: 10.1103/PhysRevLett.108.146402
[27] EREMETS M I, TROYAN I A, LERCH P, et al. Infrared study of hydrogen up to 310 GPa at room temperature [J]. High Pressure Research, 2013, 33(2): 377–380. doi: 10.1080/08957959.2013.794229
[28] ZHA C S, LIU Z X, AHART M, et al. High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy [J]. Physical Review Letters, 2013, 110(21): 217402. doi: 10.1103/PhysRevLett.110.217402
[29] MCMAHON J M, MORALES M A, PIERLEONI C, et al. The properties of hydrogen and helium under extreme conditions [J]. Reviews of Modern Physics, 2012, 84(4): 1607–1653. doi: 10.1103/RevModPhys.84.1607
[30] HOWIE R T, DALLADAY-SIMPSON P, GREGORYANZ E. Raman spectroscopy of hot hydrogen above 200 GPa [J]. Nature Materials, 2015, 14(5): 495–499. doi: 10.1038/nmat4213
[31] JIANG S Q, HOLTGREWE N, GEBALLE Z M, et al. A spectroscopic study of the insulator-metal transition in liquid hydrogen and deuterium [J]. Advanced Science, 2020, 7(2): 1901668. doi: 10.1002/advs.201901668
[32] CELLIERS P M, MILLOT M, BRYGOO S, et al. Insulator-metal transition in dense fluid deuterium [J]. Science, 2018, 361(6403): 677–682. doi: 10.1126/science.aat0970
[33] MCWILLIAMS R S, DALTON D A, MAHMOOD M F, et al. Optical properties of fluid hydrogen at the transition to a conducting state [J]. Physical Review Letters, 2016, 116(25): 255501. doi: 10.1103/PhysRevLett.116.255501
[34] KNUDSON M D, DESJARLAIS P, BECKER A, et al. Direct observation ofan abrupt insulator-to-metal transition in dense liquid deuterium [J]. Science, 2015, 348(6242): 1455–1460. doi: 10.1126/science.aaa7471
[35] MAO H K, HEMLEY R J. Ultrahigh-pressure transitions in solid hydrogen [J]. Reviews of Modern Physics, 1994, 66(2): 671–692. doi: 10.1103/RevModPhys.66.671
[36] LORENZANA H E, SILVERA I F, GOETTEL K A. Orientational phase transitions in hydrogen at megabar pressures [J]. Physical Review Letters, 1990, 64(16): 1939–1942. doi: 10.1103/PhysRevLett.64.1939
[37] SILVERA I F, WIJNGAARDEN R J. New low-temperature phase of molecular deuterium at ultrahigh pressure [J]. Physical Review Letters, 1981, 47(1/2/3/4/5/6): 39–42. doi: 10.1103/PhysRevLett.47.39
[38] MAZIN I I, HEMLEY R J, GONCHAROV A F, et al. Quantum and classical orientational ordering in solid hydrogen [J]. Physical Review Letters, 1997, 78(6): 1066–1069. doi: 10.1103/PhysRevLett.78.1066
[39] CUI T, CHENG E, ALDER B J, et al. Rotational ordering in solid deuterium and hydrogen: a path integral Monte Carlo study [J]. Physical Review B, 1997, 55(18): 12253–12266. doi: 10.1103/PhysRevB.55.12253
[40] EDWARDS B, ASHCROFT N W, LENOSKY T. Layering transitions and the structure of dense hydrogen [J]. Europhysics Letters, 1996, 34(7): 519–524. doi: 10.1209/epl/i1996-00489-5
[41] KAXIRAS E, GUO Z. Orientational order in dense molecular hydrogen: a first-principles path-integral Monte Carlo calculation [J]. Physical Review B, 1994, 49(17): 11822–11832. doi: 10.1103/PhysRevB.49.11822
[42] MOSHARY F, CHEN N H, SILVERA I F. Remarkable high pressure phase line of orientational order in solid hydrogen deuteride [J]. Physical Review Letters, 1993, 71(23): 3814–3817. doi: 10.1103/PhysRevLett.71.3814
[43] PICKARD C J, NEEDS R J. Structure of phase Ⅲ of solid hydrogen [J]. Nature Physics, 2007, 3(7): 473–476. doi: 10.1038/nphys625
[44] PICKARD C J, MARTINEZ-CANALES M, NEEDS R J. Density functional theory study of phase IV of solid hydrogen [J]. Physical Review B, 2012, 85(21): 214114. doi: 10.1103/PhysRevB.85.214114
[45] LIU H Y, ZHU L, CUI W W, et al. Room-temperature structures of solid hydrogen at high pressures [J]. The Journal of Chemical Physics, 2012, 137(7): 074501. doi: 10.1063/1.4745186
[46] MONSERRAT B, DRUMMOND N D, DALLADAY-SIMPSON P, et al. Structure and metallicity of phase V of hydrogen [J]. Physical Review Letters, 2018, 120(25): 255701. doi: 10.1103/PhysRevLett.120.255701
[47] MORALES M A, MCMAHON J M, PIERLEONI C, et al. Towards a predictive first-principles description of solid molecular hydrogen with density functional theory [J]. Physical Review B, 2013, 87(18): 184107. doi: 10.1103/PhysRevB.87.184107
[48] AZADI S, ACKLAND G J. The role of van der Waals and exchange interactions in high-pressure solid hydrogen [J]. Physical Chemistry Chemical Physics, 2017, 19(32): 21829–21839. doi: 10.1039/C7CP03729E
[49] CLAY R C, MCMINIS J, MCMAHON J M, et al. Benchmarking exchange-correlation functionals for hydrogen at high pressures using quantum Monte Carlo [J]. Physical Review B, 2014, 89(18): 184106. doi: 10.1103/PhysRevB.89.184106
[50] MORALES M A, PIERLEONI C, SCHWEGLER E, et al. Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 12799–12803. doi: 10.1073/pnas.1007309107
[51] LI X Z, WALKER B, PROBERT M I J, et al. Classical and quantum ordering of protons in cold solid hydrogen under megabar pressures [J]. Journal of Physics: Condensed Matter, 2013, 25(8): 085402. doi: 10.1088/0953-8984/25/8/085402
[52] DRUMMOND N D, MONSERRAT B, LLOYD-WILLIAMS J H, et al. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures [J]. Nature Communications, 2015, 6(1): 7794. doi: 10.1038/ncomms8794
[53] CHEN J, REN X G, LI X Z, et al. On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study [J]. The Journal of Chemical Physics, 2014, 141(2): 024501. doi: 10.1063/1.4886075
[54] AZADI S, FOULKES W M C, KÜHNE T D. Quantum Monte Carlo study of high pressure solid molecular hydrogen [J]. New Journal of Physics, 2013, 15(11): 113005. doi: 10.1088/1367-2630/15/11/113005
[55] HAZEN R M, MAO H K, FINGER L W, et al. Single-crystal X-ray diffraction of n-H2 at high pressure [J]. Physical Review B, 1987, 36(7): 3944–3947. doi: 10.1103/PhysRevB.36.3944
[56] MAO H K, BELL P M. Observations of hydrogen at room temperature (25 ℃) and high pressure (to 500 kilobars) [J]. Science, 1979, 203(4384): 1004–1006. doi: 10.1126/science.203.4384.1004
[57] MAO H K, JEPHCOAT A P, HEMLEY R J, et al. Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals [J]. Science, 1988, 239(4844): 1131–1134. doi: 10.1126/science.239.4844.1131
[58] LOUBEYRE P, LETOULLEC R, HAUSERMANN D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures [J]. Nature, 1996, 383(6602): 702–704. doi: 10.1038/383702a0
[59] AKAHAMA Y, NISHIMURA M, KAWAMURA H, et al. Evidence from X-ray diffraction of orientational ordering in phase Ⅲ of solid hydrogen at pressures up to 183 GPa [J]. Physical Review B, 2010, 82(6): 060101. doi: 10.1103/PhysRevB.82.060101
[60] GONCHARENKO I, LOUBEYRE P. Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium [J]. Nature, 2005, 435(7046): 1206–1209. doi: 10.1038/nature03699
[61] BOEHLER R, GUTHRIE M, MOLAISON J J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa [J]. High Pressure Research, 2013, 33(3): 546–554. doi: 10.1080/08957959.2013.823197
[62] JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-9
[63] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
[64] JI C. Crystallography of low z material at ultrahigh pressure: case study on solid hydrogen [J]. Matter and Radiation at Extremes(In Press), 2020.
[65] LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 Mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115
[66] WANG L, DING Y, YANG W G, et al. Nanoprobe measurements of materials at megabar pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6140–6145. doi: 10.1073/pnas.1001141107
[67] MEZOUAR M, FAURE P, CRICHTON W, et al. Multichannel collimator for structural investigation of liquids and amorphous materials at high pressures and temperatures [J]. Review of Scientific Instruments, 2002, 73(10): 3570–3574. doi: 10.1063/1.1505104
[68] YAOITA K, KATAYAMA Y, TSUJI K, et al. Angle-dispersive diffraction measurement system for high-pressure experiments using a multichannel collimator [J]. Review of Scientific Instruments, 1997, 68(5): 2106–2110. doi: 10.1063/1.1148103
[69] WECK G, GARBARINO G, LOUBEYRE P, et al. Liquid hydrogen structure factor to 5 GPa and evidence of a crossover between two density evolutions [J]. Physical Review B, 2015, 91(18): 180204. doi: 10.1103/PhysRevB.91.180204
[70] PRESCHER C, PRAKAPENKA V B, STEFANSKI J, et al. Beyond sixfold coordinated Si in SiO2 glass at ultrahigh pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(38): 10041–10046. doi: 10.1073/pnas.1708882114
[71] DUBROVINSKY L, DUBROVINSKAIA N, KATSNELSON M I. No evidence of isostructural electronic transitions in compressed hydrogen [EB/OL]. arXiv: 1910.10772, [2020-03-03]. https://arxiv.org/abs/1910.10772.
[72] AKAHAMA Y, KAWAMURA H, HIRAO N, et al. Raman scattering and X-ray diffraction experiments for phase Ⅲ of solid hydrogen [J]. Journal of Physics: Conference Series, 2010, 215(1): 012056.
[73] ANDERSON O L, ISAAK D G, YAMAMOTO S. Anharmonicity and the equation of state for gold [J]. Journal of Applied Physics, 1989, 65(4): 1534–1543. doi: 10.1063/1.342969
[74] SPEZIALE S, ZHA C S, DUFFY T S, et al. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure-volume-temperature equation of state [J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B1): 515–528. doi: 10.1029/2000JB900318
[75] AKAHAMA Y, KAWAMURA H. Pressure calibration of diamond anvil Raman gauge to 410 GPa [J]. Journal of Physics: Conference Series, 2010, 215(1): 012195. doi: 10.1088/1742-6596/215/1/012195
[76] HOWIE R T, GREGORYANZ E, GONCHAROV A F. Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures [J]. Journal of Applied Physics, 2013, 114(7): 073505. doi: 10.1063/1.4818606
[77] AKAHAMA Y, MIZUKI Y, NAKANO S, et al. Raman scattering and X-ray diffraction studies on phase Ⅲ of solid hydrogen [J]. Journal of Physics: Conference Series, 2017, 950(4): 042060. doi: 10.1088/1742-6596/950/4/042060
[78] JENEI Z, O’BANNON E F, WEIR S T, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar [J]. Nature Communications, 2018, 9(1): 3563. doi: 10.1038/s41467-018-06071-x
[79] DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Toroidal diamond anvil cell for detailed measurements under extreme static pressures [J]. Nature Communications, 2018, 9(1): 2913. doi: 10.1038/s41467-018-05294-2
[80] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3(10): 1163. doi: 10.1038/ncomms2160