[1] Shu C W. Essentially Non-Oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws [R]. ICASE Report No. 97-65, NASA/CR-97-206253, 1997.
[2] Balsara D, Shu C W. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy [J]. J Comput Phys, 2000, 160: 405-452.
[3] Karni S. Multicomponent Flow Calculations by a Consistent Primitive Algorithm [J]. J Comput Phys, 1994, 112: 31-43.
[4] Fedkiw R, AslamT, Merriman B, et al. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) [J]. J Comput Phys, 1999, 152: 457-492.
[5] Fedkiw R. Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation with the Ghost Fluid Method [J]. J Compt Phys, 2002, 175: 200-224.
[6] Caiden R, Fedkiw R, Anderson C. A Numerical Method for Two-Phase Flow Consisting of Separate Compressible and Incompressible Regions [J]. J Comput Phys, 2001, 166: 1-27.
[7] Fedkiw R, AslamT, Merriman B, et al. The Ghost Fluid Method for Deflagration and Detonation Discontinuities [J]. J Comput Phys, 1999, 154: 393-427.
[8] Shyue K M. An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems [J]. J Comput Phys, 1998, 142: 208-242.
[9] Liu T G, Khoo B C, Yeo K S. Ghost Fluid Method for Strong Shock Impacting on Material Interface [J]. J Comput Phys, 2003, 190: 651-681.
[10] Marquina A, Mulet P. A Flux-Split Algorithm Applied to Conservative Models for Multicomponent Compressible Flows [J]. J Comput Phys, 2003, 185: 120-138.