[1] MARTIN R F, DONNAY G. Hydroxyl in the mantle [J]. American Mineralogist, 1972, 57(3/4): 554570.
[2] HIRSCHMANN M M. Water, melting, and the deep Earth H2O cycle [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 629–653. doi: 10.1146/annurev.earth.34.031405.125211
[3] GREEN D H, HIBBERSON W O, KOVÁCS I, et al. Water and its influence on the lithosphere–asthenosphere boundary [J]. Nature, 2010, 467(7314): 448–451. doi: 10.1038/nature09369
[4] HIRSCHMANN M M, AUBAUD C, WITHERS A C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle [J]. Earth and Planetary Science Letters, 2005, 236(1/2): 167–181. doi: 10.1016/j.jpgl.2005.04.022
[5] OHTANI E. Water in the mantle [J]. Elements, 2005, 1(1): 25–30. doi: 10.2113/gselements.1.1.25
[6] OHTANI E. The role of water in Earth's mantle [J]. National Science Review, 2020, 7(1): 224–232. doi: 10.1093/nsr/nwz071
[7] 夏群科, 杨晓志, 郝艳涛, 等. 深部地球中水的分布和循环 [J]. 地学前缘, 2007, 14(2): 10–23. doi: 10.3321/j.issn:1005-2321.2007.02.002

XIA Q K, YANG X Z, HAO Y T, et al. Water: distribution and circulation in the deep Earth [J]. Earth Science Frontiers, 2007, 14(2): 10–23. doi: 10.3321/j.issn:1005-2321.2007.02.002
[8] YANG X, KEPPLER H, LI Y. Molecular hydrogen in mantle minerals [J]. Geochemical Perspectives Letters, 2016, 2(2): 160–168. doi: 10.7185/geochemlet.1616
[9] HU Q Y, KIM D Y, LIU J, et al. Dehydrogenation of goethite in Earth’s deep lower mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1498–1501. doi: 10.1073/pnas.1620644114
[10] HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
[11] ZHANG L, YUAN H S, MENG Y, et al. Discovery of a hexagonal ultradense hydrous phase in (Fe, Al)OOH [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2908–2911. doi: 10.1073/pnas.1720510115
[12] OHTANI E, HIRAO N, KONDO T, et al. Iron-water reaction at high pressure and temperature, and hydrogen transport into the core [J]. Physics and Chemistry of Minerals, 2005, 32(1): 77–82. doi: 10.1007/s00269-004-0443-6
[13] VOHRA Y K, DUCLOS S J, RUOFF A L. High-pressure x-ray diffraction studies on rhenium up to 216 GPa (2.16 Mbar) [J]. Physical Review B, 1987, 36(18): 9790–9792. doi: 10.1103/PhysRevB.36.9790
[14] BONDARENKO Y A, KABLOV E N, SUROVA V A, et al. Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy [J]. Metal Science and Heat Treatment, 2006, 48(7/8): 360–363. doi: 10.1007/s11041-006-0099-6
[15] NAUMOV A V. Rhythms of rhenium [J]. Russian Journal of Non-Ferrous Metals, 2007, 48(6): 418–423. doi: 10.3103/S1067821207060089
[16] SANTAMARÍA-PÉREZ D, MCGUIRE C, MAKHLUF A, et al. Exploring the chemical reactivity between carbon dioxide and three transition metals (Au, Pt, and Re) at high-pressure, high-temperature conditions [J]. Inorganic Chemistry, 2016, 55(20): 10793–10799. doi: 10.1021/acs.inorgchem.6b01858
[17] CHELLAPPA R S, SOMAYAZULU M, HEMLEY R J. Rhenium reactivity in H2O-O2 supercritical mixtures at high pressures [J]. High Pressure Research, 2009, 29(4): 792–799. doi: 10.1080/08957950903286450
[18] MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276–3283. doi: 10.1063/1.325277
[19] GONCHAROV A F, GREGORYANZ E, STRUZHKIN V V, et al. Raman scattering of metals to very high pressures [EB/OL]. arXiv: cond-mat/0112404. (2001-12-20)[2020-03-01]. http://arxiv.org/abs/cond-mat/0112404.
[20] PRUZAN P, CHERVIN J C, GAUTHIER M. Raman spectroscopy investigation of ice Ⅶ and deuterated ice Ⅶ to 40 GPa: disorder in ice Ⅶ [J]. EPL (Europhysics Letters), 1990, 13(1): 81–87. doi: 10.1209/0295-5075/13/1/014
[21] WALRAFEN G E, ABEBE M, MAUER F A, et al. Raman and x-ray investigations of ice Ⅶ to 36.0 GPa [J]. The Journal of Chemical Physics, 1982, 77(4): 2166–2174. doi: 10.1063/1.444023
[22] CAREY D M, KORENOWSKI G M. Measurement of the Raman spectrum of liquid water [J]. The Journal of Chemical Physics, 1998, 108(7): 2669–2675. doi: 10.1063/1.475659
[23] DUNAEVA A N, ANTSYSHKIN D V, KUSKOV O L. Phase diagram of H2O: thermodynamic functions of the phase transitions of high-pressure ices [J]. Solar System Research, 2010, 44(3): 202–222. doi: 10.1134/S0038094610030044
[24] HSIEH W P, CHIEN Y H. High pressure Raman spectroscopy of H2O-CH3OH mixtures [J]. Scientific Reports, 2015, 5(1): 8532. doi: 10.1038/srep08532
[25] OTTO J W, VASSILIOU J K, PORTER R F, et al. Raman study of AgReO4 in the scheelite structure under pressure [J]. Physical Review B, 1991, 44(17): 9223–9227. doi: 10.1103/PhysRevB.44.9223
[26] KLUG D D, SIM P G, BROWN R J C. Raman spectrum of NH4ReO4 at high pressure [J]. Journal of Raman Spectroscopy, 1982, 13(1): 53–55. doi: 10.1002/jrs.1250130110
[27] MACHIDA S I, HIRAI H, KAWAMURA T, et al. Raman spectra for hydrogen hydrate under high pressure: intermolecular interactions in filled ice Ic structure [J]. Journal of Physics and Chemistry of Solids, 2010, 71(9): 1324–1328. doi: 10.1016/j.jpcs.2010.05.015
[28] MACHIDA S, HIRAI H, KAWAMURA T, et al. Structural changes and intermolecular interactions of filled ice ic structure for hydrogen hydrate under high pressure [J]. Journal of Physics: Conference Series, 2010, 215(1): 012060. doi: 10.1088/1742-6596/215/1/012060
[29] STOICHEFF B P. High resolution Raman spectroscopy of gases: IX. spectra of H2, HD, and D2 [J]. Canadian Journal of Physics, 1957, 35(6): 730–741. doi: 10.1139/p57-079
[30] SHARMA S K, MAO H K, BELL P M. Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature [J]. Physical Review Letters, 1980, 44(13): 886–888. doi: 10.1103/PhysRevLett.44.886