[1] Erskine D J, Nellis W J. Shock-Induced Martensitic Phase Transformation of Oriented Graphite to Diamond [J]. Nature, 1991, 349: 317-319.
[2] Dubrovinsky L S, Saxena S K, Lazor P, et al. Experimental and Theoretical Identification of a New High-Pressure Phase of Silica [J]. Nature, 1997, 388: 362-365.
[3] Brich F. Elasticity and Constitution of the Earth's Interior [J]. J Geophys Res, 1952, 57: 227-236.
[4] Jephcoat A, Olson P. Is the Inner Core of the Earth Pure Iron [J]. Nature, 1987, 325: 332-335.
[5] Minshall S. Properties of Elastic and Plastic Waves Determined by Pin Contactors and Crystals [J]. J Appl Phys, 1955, 26: 463-469.
[6] Bancroft D, Peterson E L, Minshall S. Polymorphism of Iron at High Pressure [J]. J Appl Phys, 1956, 27: 291-298.
[7] Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS Measurement of Iron bcc-to-hcp Phase Transformation in Nanosecond-Laser Shocks [J]. Phys Rev Lett, 2005, 95: 075501-1-4.
[8] Boettger J C, Wallace D C. Metastability and Dynamics of the Shock-Induced Phase Transition in Iron [J]. Phys Rev B, 1997, 55: 2840-2849.
[9] Kadau K, Germann T C, Lomdahl P S, et al. Microscopic View of Structural Phase Transitions Induced by Shock Waves [J]. Science, 2002, 296: 1681-1684.
[10] Kadau K, Germann T C, Lomdahl P S, et al. Atomistic Simulations of Shock-Induced Transformations and Their Orientation Dependence in bcc Fe Single Crystal [J]. Phys Rev B, 2005, 72: 064120-1-14.
[11] Kadau K, Germann T C, Lomdahl P S, et al. Shock Waves in Polycrystalline Iron [J]. Phys Rev Lett, 2007, 98: 135701-1-4.
[12] Bassett W A, Huang E. Mechanism of the Body-Centered Cubic-Hexagonal Close-Packed Phase Transformation in Iron [J]. Science, 1987, 248: 780-783.
[13] Kalantar D H, Belak J F, Collins G W, et al. Direct Observation of Transition in Shock-Compressed Iron via Nanosecond X-Ray Diffraction [J]. Phys Rev Lett, 2005, 95: 075502-1-4.
[14] Wang F M, Ingalls R. Iron bcc-hcp Transition: Local Structure from X-Ray-Absorption Fine Structure [J]. Phys Rev B, 1998, 57: 5647-5654.
[15] Hawreliak J, Colvin J D, Eggert J H, et al. Analysis of the X-Ray Diffraction Single for the Transition in Shock-Compressed Iron: Simulation and Experiment [J]. Phys Rev B, 2006, 74: 184107-1-16.
[16] Luo J, Zhu W J, Lin L B, et al. Molecular Dynamics Simulation of Void Growth in Single Crystal Copper under Uniaxial Impacting [J]. Acta Physica Sinica, 2005, 54: 2791-2798. (in Chinese)
[17] 罗晋, 祝文军, 林理彬, 等. 单晶铜在动态加载下空洞增长的分子动力学研究 [J]. 物理学报, 2005, 54: 2791-2798.
[18] Harrison R J, Voter A F, Chen S P. Embedded Atom Potential For bcc Iron [A]//Vitek V, Srolovitz D J. Atomistic Simulation of Materials: Beyond Pair Potentials [C]. New York: Plenum, 1989: 219-222.
[19] Daw M S, Baskes M I. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals [J]. Phys Rev Lett, 1983, 50: 1285-1288.
[20] Baskes M I. Modified Embedded-Atom Potentials for Cubic Materials and Impurities [J]. Phys Rev B, 1992, 46: 2727-2742.
[21] Honeycutt J D, Andersen H C. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters [J]. J Phys Chem, 1987, 91: 4950-4963.
[22] Mao H K, Bassett W A, Takahashi T. Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar [J]. J Appl Phys, 1967, 38: 272-276.
[23] Burgers W G. On the Process of Transition of the Cubic-Body-Centered Modification into the Hexagonal-Closed-Packed Modification of Zirconium [J]. Phys, 1934, 1: 561-586.