[1] Rose J H, Smith J R, Guinea F. Universal Features of the Equation of State of Metals [J]. Phys Rev B, 1984, 29(6): 2963-2969.
[2] Vinet P, Smith J R, Ferrante J, et al. Temperature Effects on the Universal Equation of State of Solids [J]. Phys Rev B, 1987, 35(4): 1945-1953.
[3] Dodson B. Universal Scaling Relations in Compressibility of Solids [J]. Phys Rev B, 1987, 35(6): 2619-2625.
[4] Kumari M, Dass N. An Equation of State Applied to Sodium Chloride and Caesium Chloride at High Pressures and High Temperatures [J]. J Phys: Condens Matter, 1990, 2(14): 3219-3229.
[5] Kuchhal P, Kumar R, Dass N. Equation of State of Liquid Metals from Sound-Velocity Measurements [J]. Phys Rev B, 1997, 55(13): 8042-8044.
[6] Parsafar G, Mason E A. Universal Equation of State for Compressed Solids [J]. Phys Rev B, 1994, 49(5): 3049-3060.
[7] Hama J, Suito K. The Search for a Universal Equation of State Correct up to Very High Pressures [J]. J Phys: Condens Matter, 1996, 8(1): 67-81.
[8] Baonza V G, Caceres M, Nunez J. The Spinodal as a Reference Curve for the High-Pressure Volumetric Behavior of Liquids [J]. Chem Phys Lett, 1993, 216(3-6): 579-584.
[9] Baonza V G, Caceres M, Nunez J. High-Pressure Compressibility Behavior of Liquids Referred to a Pseudospinodal Curve [J]. Chem Phys Lett, 1994, 228(1-3): 137-143.
[10] Baonza V G, Caceres M, Nunez J. Experimental Measurement of Quasi-Fermi Levels at an Illuminated Semiconductor/Liquid Contact [J]. J Phys Chem, 1994, 98(19): 4955-4958.
[11] Baonza V G, Caceres M, Nunez J. Universal Compressibility Behavior of Dense Phases [J]. Phys Rev B, 1995, 51(1): 28-37.
[12] Baonza V G, Taravillo M, Caceres M, et al. Universal Features of the Equation of State of Solids from a Pseudospinodal Hypothesis [J]. Phys Rev B, 1996, 53(9): 5252-5258.
[13] Taravillo M, Baonza V G, Caceres M, et al. Simple Equation of State for Solids under Compression [J]. Phys Rev B, 1996, 54(10): 7034-7045.
[14] Taravillo M, Baonza V G, Rubio M, et al. The Temperature Dependence of the Equation of State at High Pressures Revisited: A Universal Model for Solids [J]. J Phys Chem Solids, 2002, 63(9): 1705-1715.
[15] Brosh E, Makov G, Shneck R Z. The Spinodal Constraint on the Equation of State of Expanded Fluids [J]. J Phys: Condens Matter, 2003, 15(19): 2991-3001.
[16] Sushil B R, Papiya B R. An Equation of State Applied to Solid up to 1 TPa [J]. J Phys: Condens Matter, 1999, 11(50): 10375-10391.
[17] Holzapfel W B. Physics of Solids under Strong Compression [J]. Reports on Progress in Physics, 1996, 59 (1): 29-90.
[18] Holzapfel W B. Equations Comment on Energy and Pressure versus Volume of State Motivated by the Stabilized Jellium Model [J]. Phys Rev B, 2003, 67(2): 026102-026104.
[19] Sun J X, Wu Q, Cai L C, et al. Two Universal Equations of State for Solids Satisfying the Limiting Condition at High Pressure [J]. J Phys Chem Solids, 2005, 66(5): 773-782.
[20] Wang Zh Ch. Thermodynamics and Statistical Physics [M]. 3rd ed. Beijing: Higher Education Press, 2003: 309-317. (in Chinese).
[21] 汪志诚. 热力学统计物理 [M]. 第三版. 北京: 高等教育出版社, 2003: 309-317.
[22] Nellis W J. Shock Compression of a Free-Electron Gas [J]. J App Phys, 2003, 94(1): 272-275.