[1] LI B Y, RONG L J, LI Y Y, et al. Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure [J]. Acta Mater, 2000, 48(15): 3895-3904.
[2] KURODA D, NIINOMI M, MORINAGA M, et al. Design and mechanical properties of new type titanium alloys for implant materials [J]. Mater Sci Eng A, 1998, 243(1/2): 244-249.
[3] 张俊彦. 多孔材料的力学性能及破坏机理 [D]. 湘潭: 湘潭大学, 2003.
[4] ZHANG J Y. Mechanical properties and breakage mechanism of cellular materials [D]. Xiangtan: Xiangtan University, 2003.
[5] 李煦阳. 孔隙类工程材料的静动态力学性能研究和在防护工程中的应用 [D]. 合肥: 中国科学技术大学, 2014.
[6] LI X Y. Research on mechanics behavior and defense engineering application of void containing materials [D]. Hefei: University of Science and Technology of China, 2014.
[7] 汤慧萍, 王建. 多孔钛的研究进展 [J]. 中国材料进展, 2014(9): 576-585.
[8] TANG H P, WANG J. Progress in research and development of porous titanium materials [J]. Materials China, 2014(9): 576-585.
[9] IQBAL N, XUE P, LIAO H J, et al. Material characterization of porous bronze at high strain rates [J]. Mater Sci Eng A, 2011, 528(13/14): 4408-4412.
[10] UPADHYAYA G S. Powder metallurgy technology [M]. Cambridge International Science Publishing, 1997.
[11] XUE P, IQBAL N, LIAO H J, et al. Experimental study, on strain rate sensitivity of ductile porous irons [J]. Int J Impact Eng, 2012, 48(1): 82-86.
[12] WANG B, ZHANG J, LU G. Taylor impact test for ductile porous materialsPart 2: experiments [J]. Int J Impact Eng, 2003, 28(5): 499-511.
[13] WANG B, KLEPACZKO J R, LU G, et al. Viscoplastic behaviour of porous bronzes and irons [J]. J Mater Process Tech, 2001, 113(1/2/3): 574-580.
[14] LIU X H, HUANG H Y, XIE J X. Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper [J]. Int J Min Met Mater, 2014, 21(7): 687-695.
[15] HYUN S K, NAKAJIMA H. Fabrication of porous iron by unidirectional solidification in nitrogen atmosphere [J]. Mater Trans, 2002, 43(3): 526-531.
[16] WANG X H, LI J, RUI H U, et al. Mechanical properties and pore structure deformation behaviour of biomedical porous titanium [J]. T Nonferr Metal Soc, 2015, 25(5): 1543-1550.
[17] SCHUEREN B V D, KRUTH J P. Powder deposition in selective metal powder sintering [J]. Rapid Prototyping J, 1995, 1(3): 23-31.
[18] 王永刚, 王春雷. 结构特征参数和应变速率对泡沫铝压缩力学性能的影响 [J]. 兵工学报, 2011, 32(1): 106-111.
[19] WANG Y G, WANG C L. Effect of structure characteristic parameters and strain rate on the compressive mechanic properties of aluminum foams [J]. Acta Armamentarii, 2011, 32(1): 106-111.
[20] SIMONE A E, GIBSON L J. The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams [J]. Acta Mater, 1998, 46(11): 3929-3935.
[21] SIMONE A E, GIBSON L J. Effects of solid distribution on the stiffness and strength of metallic foams [J]. Acta Mater, 1998, 46(6): 2139-2150.
[22] 牛文娟. 多孔钛及其合金的制备及性能研究 [D]. 重庆: 重庆大学, 2010.
[23] NIU W J. Research on preparation and properties of porous titanium and its alloys [D]. Chongqing: Chongqing University, 2010.
[24] 刘培生, 黄林国. 多孔金属材料制备方法 [J]. 功能材料, 2002, 33(1): 5-8.
[25] LIU P S, HUANG L G. Preparation methods for porous metal materials [J]. Journal of Functional Materials, 2002, 33(1): 5-8.
[26] 卢天健, 何德坪, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用 [J]. 力学进展, 2006, 36(4): 517-535.
[27] LU T J, HE D P, CHEN C Q, et al. The multi-functionality of ultra-light porous metals and their applications [J]. Advances in Mechanics, 2006, 36(4): 517-335.
[28] 刘培生. 多孔材料孔率的测定方法 [J]. 钛工业进展, 2005, 22(6): 34-37.
[29] LIU P S. Determining methods for porosity of porous materials [J]. Titanium Industry Progress, 2005, 22(6): 34-37.
[30] LEE O S, KIM M S. Dynamic material property characterization by using split Hopkinson pressure bar (SHPB) technique [J]. Nucl Eng Des, 2003, 226(2): 119-125.
[31] 常列珍, 张治民. SHPB实验技术及其发展 [J]. 机械管理开发, 2006(5): 29-31.
[32] CHANG L Z, ZHANG Z M. The experiment technology and development of SHPB [J]. Mechanical Management Development, 2006(5): 29-31.
[33] NAKAJIMA H. Porous metals with directional pores [M]. Springer Japan, 2013: 151-153.
[34] TANE M, ICHITSUBO T, HYUN S K, et al. Anisotropic yield behavior of lotus-type porous iron: measurements and micromechanical mean-field analysis [J]. J Mater Res, 2005, 20(1): 135-143.
[35] TANE M, ICHITSUBO T, HIRAO M, et al. Extended mean-field method for predicting yield behaviors of porous materials [J]. Mech Mater, 2007, 39(1): 53-63.
[36] ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics [J]. Trans AIME, 1942, 146(1): 54-62.