[1] Gao J X, Xu X H, Qin J W, et al. Advanced Sintering Technique of Nanometer Magnetic Powder-Explosive Consolidation [J]. Metallic Fuctional Materials, 1995, 4(5): 199-201. (in Chinese)
[2] 高举贤, 徐小鸿, 秦建武, 等. 纳米磁性粉末成形新工艺-爆炸烧结 [J]. 金属功能材料, 1995, 4(5): 199-201.
[3] Li J P, Luo S J. Characteristics of CuCr Contact Materials Made by Explosive Sintering [J]. The Chinese Journal of Nonferrous Metals, 2001, 11(1): 98-101. (in Chinese)
[4] 李金平, 罗守靖. 爆炸烧结CuCr触头材料的性能 [J]. 中国有色金属学报, 2001, 11(1): 98-101.
[5] Zhou X G, Yi D Q, Tang R Z. The Intial Study of Manufacturing TiAl/TiB2 Composite by Explosive Compaction [J]. Rare Metal Materials and Engineering, 1993, 22(1): 31-36. (in Chinese)
[6] 周新贵, 易丹青, 唐仁正. 用爆炸压实方法制取TiAl/TiB2复合材料除探 [J]. 稀有金属材料与工程, 1993, 22(1): 31-36.
[7] Chen K H, Jin Z Q. Bulk Nanocomposite Magnets Produced by Dynamic Shock Compaction [J]. J Appl Phys, 2004, 96(2): 1276-1278.
[8] Mamalis A G. Manufacturing of Bulk High-Tc Superconductors [J]. International Journal of Inorganic Materials, 2000, 2: 623-633.
[9] Zhang D L. Numerical Simulation of Powder Materials by Explosive Compaction [J]. Advances in Mechanics, 1994, 24(1): 37-56. (in Chinese)
[10] 张德良. 粉末材料爆炸压实数值模拟 [J]. 力学进展, 1994, 24(1): 37-56.
[11] Shao B H, Gao J X, Li G H. The Mechanism of Energy Deposition at the Interface of Metal Powder in Explosive Consolidation [J]. Explosive and Shock Waves, 1989, 3(1): 17-27. (in Chinese)
[12] 邵丙璜, 高举贤, 李国豪. 金属粉末爆炸烧结界面能量沉积机制 [J]. 爆炸与冲击, 1989, 3(1): 17-27.
[13] Wang L, Tang R F, Wang T F. Analysis of Heat Deposition in Explosive Sinter Wu-Cu Alloy Powder [J]. Journal of Ballistics, 1995, 7(1): 82-88. (in Chinese)
[14] 王雷, 汤瑞峰, 王铁福. 爆炸烧结钨铜合金粉的热沉积现象分析 [J]. 弹道学报, 1995, 7(1): 82-88.
[15] Wang J X, Li X J, Yan H H. Research of Energy Deposition Caused by Micro-Explosive Welding in Explosive Consolidation of Metal Powders [J]. Rare Metal Materials and Engineering, 2006, 35(7): 1039-1044.
[16] Zheng J, Wang Z P. Evolution of Voids in Ductile Porous Materials at High Strain Rate [J]. Acta Mechanica Solida Sinica, 1994, 15(3): 189-198. (in Chinese)
[17] 郑坚, 王泽平. 高应变率下延性多孔介质中孔洞的动态演化 [J]. 固体力学学报, 1994, 15(3): 189-198.
[18] Herrmann W. Constitutive Equation for the Dynamic Compaction of Ductile Porous Material [J]. J Appl Phys, 1969, 40(6): 2490-2499.
[19] Carroll M M, Holt A C. Static and Dynamic Poro-Collapse Relations for Ductile Porous Materials [J]. J Appl Phys, 1972, 43(4): 1626-1635.
[20] Butcher B M. Shock-Wave Compaction of Porous Aluminum [J]. J Appl Phys, 1974, 45(3): 3864-3875.
[21] Naumann R J. Equation of State for Porous Metals under Strong Shock Compression [J]. J Appl Phys, 1971, 42(12): 1945-4953.
[22] Li Y C, Shi D Y, Zhao Y. Basic Theory and Engineering Practice of Ansys LS-DYNA [M]. Beijing: China Water Power Press, 2006: 389-394. (in Chinese)
[23] 李裕春, 时党勇, 赵远. ANSYS LS-DYNA基础理论与工程实践 [M]. 北京: 中国水利水电出版社, 2006: 389-394.
[24] Jing F Q. Experiment Equation of State (2nd ed) [M]. Beijing: Science Press, 1999: 17-46. (in Chinese)
[25] 经福谦. 实验物态方程导引(第2版) [M]. 北京: 科学出版社, 1999: 17-46.
[26] Tang W H, Zhang R Q. Theory and Calculating of Euqation of State [M]. Changsha: Press of National University of Defense Technology, 1999: 113-122. (in Chinese)
[27] 汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 长沙: 国防科技大学出版社, 1999: 113-122.
[28] Nellis W J, Radousky H B, Hamilton D C. Equation-of-State, Shock-Remperature, and Electrical-Conductivity Data of Dense Fluid Nitrogen in the Region of the Dissociative Phase Transition [J]. J Chem Phys, 1991, 94(3): 2244-2257.
[29] Cooper S R, Benson D J, Nesterenko V F. A Numerical Exploration of the Role of Void Geometry on Void Collapse and Hot Spot Formation in Ductile Materials [J]. International Journal of Plasticity, 2000, 16: 525-540.
[30] Marsh S P. LASL Shock Hugoniot Data [M]. Berkeley: University of California Press, 1980.
[31] Meyers M A, Benson D J, Olevsky E A. Shock Consolidation: Microstructurally-Based Analysis and Computational Modeling [J]. Acta Mater, 1999, 47(7): 2089-2108.