[1] Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Rev Mod Phys, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755
[2] Batani D, Balducci A, Beretta D, et al. Equation of state data for gold in the pressure range < 10 TPa[J]. Phys Rev B, 2000, 61(14): 9287-9294. doi: 10.1103/PhysRevB.61.9287
[3] Matzen M, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Phys Plasmas, 2005, 12(5): 055503. doi: 10.1063/1.1891746
[4] Burdiak G C, Lebedev S V, Drake R P, et al. The production and evolution of multiple converging radiative shock waves in gas-filled cylindrical liner Z-pinch experiments[J]. High Energ Dens Phys, 2013, 9(1): 52-62. doi: 10.1016/j.hedp.2012.10.006
[5] Feynman R P, Metropolis N, Teller E. Equations of state of elements based on the generalized Fermi-Thomas theory[J]. Phys Rev, 1949, 75(10): 1561-1573. doi: 10.1103/PhysRev.75.1561
[6] Rozsnyai B F. Relativistic Hartree-Fock-Slater calculations for arbitrary temperature amd matter density[J]. Phys Rev A, 1972, 5(3): 1137-1149. doi: 10.1103/PhysRevA.5.1137
[7] More R M, Warren K H, Young D A, et al. A new quotidian equation of state(QEOS)for hot dense matter[J]. Phys Fluids, 1988, 31(10): 3059-3078. doi: 10.1063/1.866963
[8] Perrot F, Dharma-wardana M W C. Equation of state and transport properties of an interacting multi-species plasma: Application to a multiply ionized Al plasma[J]. Phys Rev E, 1995, 52(5): 5352-5367. doi: 10.1103/PhysRevE.52.5352
[9] Nikiforov A F, Novikov V G, Solomyannaya A D. Analytical wave functions in self-consistent field models for high-temperature plasma[J]. Laser Part Beams, 1990, 14(4): 765-0779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=LPB14_04\LPB\LPB14_04\S0263034600010454h.xml
[10] Liberman D A. Self-consistent-field for condensed matter[J]. Phys Rev B, 1979, 20(12): 4981-4989. doi: 10.1103/PhysRevB.20.4981
[11] Pain J C. Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats[J]. High Energ Dens Phys, 2007, 3(1): 204-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000613432
[12] Blenski T, Ciichocki B. Variational theory of average-atom and superconfigurations in quantum plasmas[J]. Phys Rev E, 2007, 75(5): 056402. doi: 10.1103/PhysRevE.75.056402
[13] Faussurier G, Blancard C, Renaudin P. Equation of state of dense plasmas using a screened-hydrogenic model with l-splitting[J]. High Energ Dens Phys, 2008, 4(3): 114-123. http://www.sciencedirect.com/science/article/pii/S1574181808000190
[14] Rozsnyai B F. Shock Hugoniots based on the self-average atom(SCAA)model. Theory and experiments[J]. High Energ Dens Phys, 2012, 8(1): 88-100. doi: 10.1016/j.hedp.2011.11.012
[15] Yuan J K, Sun Y S, Zheng S T. Average atom model in hot plasmas[J]. Chinese Journal of Atomic and Molecular Physics. 1995, 12(2): 118-126.
[16] 朱希睿, 孟续军, 田明锋, 等.等离子体电子压强的Hartree-Fock-Slater自洽场的计算[J].物理学报, 2005, 54(9): 4101-4107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200509026

Zhu X R, Meng X J, Tian M F, et al. Hartree-Fock-Slater self-consistent field calculation of electron pressure for plasmas[J]. Acta Physics Sinica, 2005, 54(9): 4101-4107. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200509026
[17] Shock Wave Database[DB]. (2003-07-13)http://teos.ficp.ac.ru/rusbank.
[18] Porcherot Q, Faussurier G, Blancard C. Thermodynamic conditions of shock Hugoniot curves in hot dense matter[J]. High Energ Dens Phys, 2010, 6(1): 76-83. doi: 10.1016/j.hedp.2009.06.010
[19] Zel'dovich Y B, Raizer Y P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena(Vol. Ⅱ)[M]. New York: Academic Press, 1967: 685-705.
[20] 徐锡申, 张万箱.实用物态方程理论导引[M].北京: 科学出版社, 1986: 138-537.

Xu X S, Zhang W X. An Introduction to Practical Theory of Equation of State[M]. Beijing: Science Press, 1986: 138-537. (in Chinese)
[21] 段耀勇, 郭永辉, 邱爱慈.凝聚态物质状态方程的一个数值模型[J].核聚变与等离子体物理, 2011, 31(2): 97-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbydlztwl201102001

Duan Y Y, Guo Y H, Qiu A C. A numerical model for the equation of state for condensed matter[J]. Nuclear Fusion and Plasma Physics, 2011, 31(2): 97-104. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjbydlztwl201102001
[22] Duan Y Y, Guo Y H, Qiu A C. Shock wave and particle velocities of typical metals on shock adiabats[J]. Plasma Sci Technol, 2013, 15(8): 727. doi: 10.1088/1009-0630/15/8/02
[23] Bell A R. New equations of state for Medusa, RL-80-091[R]. Chilton: Rutherford and Appleton Labs, 1980.
[24] 谭华.实验冲击波物理导引[M].北京: 国防工业出版社, 2007: 52-61.

Tan H. Introduction to Experimental Shock-Wave Physics[M]. Beijing: National Defence Industry Press, 2007: 52-61. (in Chinese)
[25] 汤文辉, 张若棋.物态方程理论及计算概论[M].第2版.北京: 高等教育出版社, 2008: 86-123.

Tang W H, Zhang R Q. Introduction to Theory and Computation of Equations of State[M]. 2nd ed. Beijing: Higher Education Press, 2008: 86-123. (in Chinese)
[26] Woan G. The Cambridge Handbook of Physics Formulas[M]. Beijing: Cambridge University Press & Beijing World Publishing Corporation, 2010: 124-125.
[27] 李维新.一维不定常流与冲击波[M].北京: 国防工业出版社, 2003: 34-55.

Li W X. One-Dimensional Non-Steady Flow and Shock Waves[M]. Beijing: National Defence Industry Press, 2003: 34-55. (in Chinese)
[28] Atzeni S, Meyer-ter-Vehn J. The Physics of Inertial Fusion[M]. Oxford: Clarendon Press, 2004: 343-345.
[29] Johnson J D. Bound and estimate for the maximum compression of single shocks[J]. Phys Rev E, 1999, 59: 3727-3728. doi: 10.1103/PhysRevE.59.3727
[30] Gschneidner K A Jr. Physical properties and interrelationships of metallic and semi-metallic elements[M]//Seitz F, Turnbull D. Solid State Physics(Vol. 16). New York & London: Academic Press, 1964: 275-426.