[1] 王文俊.新型含能材料及其推进剂的研究进展[J].推进技术, 2001, 22(4): 269-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs200104002

Wang W J. Advance on new energetic materials and its application to solid propellants[J]. Journal of Propulsion Technology, 2001, 22(4): 269-275. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs200104002
[2] Suceskac M, Rajic M, Zeman S, et al. 1, 3, 3-trinitroazetidine(TNAZ). Study of thermal behaviour. Part Ⅱ[J]. J Energ Mater, 2001, 19(2/3): 241-254. doi: 10.1080/07370650108216128
[3] Lee J S, Hsu C K, Chang C L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX[J]. Thermochim Acta, 2002, 392-393: 173-176. doi: 10.1016/S0040-6031(02)00099-0
[4] Turcotte R, Vachon M, Kwok Q S M, et al. Thermal study of HNIW(CL-20)[J]. Thermochim Acta, 2005, 433(1/2): 105-115. http://www.sciencedirect.com/science/article/pii/S0040603105001322
[5] Pourmortazavi S, Rahimi-Nasrabadi M, Kohsari I, et al. Non-isothermal kinetic studies on thermal decomposition of energetic materials[J]. J Therm Anal Calorim, 2012, 110(2): 857-863. doi: 10.1007/s10973-011-1845-6
[6] Henson B F, Asay B W, Sander R K, et al. Dynamic measurement of the HMX β-δ phase transition by second harmonic generation[J]. Phys Rev Lett, 1999, 82(6): 1213-1216. doi: 10.1103/PhysRevLett.82.1213
[7] Brill T B, Karpowicz R J. Solid phase transition kinetics. The role of intermolecular forces in the condensed-phase decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine[J]. J Phys Chem, 1982, 86(21): 4260-4265. doi: 10.1021/j100218a033
[8] Cardão P A, Gois J C, Campos J A. Thermal decomposition of energetic materials[J]. AIP Conf Proc, 2000, 505(1): 853-856.
[9] Czerski H, Greenaway M W, Proud W G, et al. Links between the morphology of RDX crystals and their shock sensitivity[J]. AIP Conf Proc, 2006, 845(1): 1053-1056. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026526418
[10] Bolotina N B, Hardie M J, Speer R L, et al. Energetic materials: Variable-temperature crystal structures of γ-and ε-HNIW polymorphs[J]. J Appl Crystallogr, 2004, 37(5): 808-814. doi: 10.1107/S0021889804017832
[11] Naya T, Kohga M. Thermal decomposition behaviors and burning characteristics of AN/nitramine-based composite propellant[J]. J Energ Mater, 2015, 33(2): 73-90. doi: 10.1080/07370652.2014.902406
[12] Oyumi Y, Brill T B. Thermal decomposition of energetic materials 5. High-rate, in situ, thermolysis of two nitrosamine derivatives of RDX by FTIR spectroscopy[J]. Combust Flame, 1985, 62(3): 233-241. doi: 10.1016/0010-2180(85)90149-X
[13] Zhao X, Hintsa E J, Lee Y T. Infrared multiphoton dissociation of RDX in a molecular beam[J]. J Chem Phys, 1988, 88(2): 801-810. doi: 10.1063/1.454158
[14] Huwei L, Rionong F. Investigation of thermal decomposition of HMX and RDX by pyrolysis-gas chromatography[J]. Thermochim Acta, 1989, 138(1): 167-171. doi: 10.1016/0040-6031(89)87251-X
[15] Botcher T R, Wight C A. Explosive thermal decomposition mechanism of RDX[J]. J Phys Chem, 1994, 98(21): 5441-5444. doi: 10.1021/j100072a009
[16] Kim E S, Lee H S, Mallery C F, et al. Thermal decomposition studies of energetic materials using confined rapid thermolysis/FTIR spectroscopy[J]. Combust Flame, 1997, 110(1/2): 239-255.
[17] Löbbecke S, Keicher T, Krause H, et al. The new energetic material ammonium dinitramide and its thermal decomposition[J]. Solid State Ionics, 1997, 101-103(Part 2): 945-951. http://www.sciencedirect.com/science/article/pii/S0167273897002154
[18] Glarborg P, Bendtsen A B, Miller J A. Nitromethane dissociation: Implications for the CH3+NO2 reaction[J]. Int J Chem Kinet, 1999, 31(9): 591-602. doi: 10.1002/(SICI)1097-4601(1999)31:9<591::AID-KIN1>3.0.CO;2-E
[19] Oxley J C, Smith J L, Rogers E, et al. Gas production from thermal decomposition of explosives: Assessing the thermal stabilities of energetic materials from gas production data[J]. J Energ Mater, 2000, 18(2/3): 97-121. doi: 10.1080/07370650008216115
[20] Maharrey S, Behrens R. Thermal decomposition of energetic materials. 5. reaction processes of 1, 3, 5-trinitrohexahydro-s-triazine below its melting point[J]. J Phys Chem A, 2005, 109(49): 11236-11249. doi: 10.1021/jp054188q
[21] Paletsky A A, Budachev N V, Korobeinichev O P. Mechanism and kinetics of the thermal decomposition of 5-aminotetrazole[J]. Kinet Catal, 2009, 50(5): 627-635. doi: 10.1134/S0023158409050036
[22] Behrens R. Thermal decomposition of energetic materials: Temporal behaviors of the rates of formation of the gaseous pyrolysis products from condensed-phase decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine[J]. J Phys Chem, 1990, 94(17): 6706-6718. doi: 10.1021/j100380a034
[23] Brill T B, Gongwer P E, Williams G K. Thermal decomposition of energetic materials. 66. Kinetic compensation effects in HMX, RDX, and NTO[J]. J Phys Chem, 1994, 98(47): 12242-12247. doi: 10.1021/j100098a020
[24] Oyumi Y, Brill T B. Thermal decomposition of energetic materials 3. A high-rate, in situ, FTIR study of the thermolysis of RDX and HMX with pressure and heating rate as variables[J]. Combust Flame, 1985, 62(3): 213-224. doi: 10.1016/0010-2180(85)90147-6
[25] Glascoe E A, Zaug J M, Burnham A K. Pressure-dependent decomposition kinetics of the energetic material HMX up to 3.6 GPa[J]. J Phys Chem A, 2009, 113(48): 13548-13555. doi: 10.1021/jp905276k
[26] Piermarini G J, Block S, Miller P J. Effects of pressure on the thermal decomposition rates, chemical reactivity and phase behavior of HMX, RDX and nitromethane[J]. Chem Phys Energ Mater(NATO ASI Series), 1990, 309: 391-412. doi: 10.1007/978-94-009-2035-4_17
[27] Piermarini G J, Block S, Miller P J. Effects of pressure and temperature on the thermal decomposition rate and reaction mechanism of beta-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine[J]. J Phys Chem, 1987, 91(14): 3872-3878. doi: 10.1021/j100298a028
[28] Pinheiro G F M, Lourenço V L, Iha K. Influence of the heating rate in the thermal decomposition of HMX[J]. J Therm Anal Calorim, 2002, 67(2): 445-452. doi: 10.1023/A:1013984813195
[29] Zhang Y X, Bauer S H. Modeling the decomposition of nitromethane, induced by shock heating[J]. J Phys Chem B, 1997, 101(43): 8717-8726. doi: 10.1021/jp970716p
[30] Patterson J E, Dreger Z A, Miao M, et al. Shock wave induced decomposition of RDX: Time-resolved spectroscopy[J]. J Phys Chem A, 2008, 112(32): 7374-7382. doi: 10.1021/jp800827b
[31] Im H S, Bernstein E R. On the initial steps in the decomposition of energetic materials from excited electronic states[J]. J Chem Phys, 2000, 113(18): 7911-7918. doi: 10.1063/1.1315609
[32] Guo Y Q, Greenfield M, Bernstein E R. Decomposition of nitramine energetic materials in excited electronic states: RDX and HMX[J]. J Chem Phys, 2005, 122(24): 244310. doi: 10.1063/1.1929741
[33] Yu Z, Bernstein E R. Decomposition of pentaerythritol tetranitrate[C(CH2ONO2)4]following electronic excitation[J]. J Chem Phys, 2011, 135(15): 154305. doi: 10.1063/1.3652893
[34] Yuan B, Yu Z, Bernstein E R. Initial decomposition mechanism for the energy release from electronically excited energetic materials: FOX-7(1, 1-diamino-2, 2-dinitroethene, C2H4N4O4)[J]. J Chem Phys, 2014, 140(7): 074708. doi: 10.1063/1.4865266
[35] Mozgina O, Koutsospyros A, Gershman S, et al. Decomposition of energetic materials by pulsed electrical discharges in gas-bubbled aqueous solutions[J]. Plasma Science, IEEE Transactions on, 2009, 37(6): 905-910. doi: 10.1109/TPS.2009.2016970
[36] Oxley J C, Hiskey M, Naud D, et al. Thermal decomposition of nitramines: Dimethylnitramine, diisopropylnitramine, and N-nitropiperidine[J]. J Phys Chem, 1992, 96(6): 2505-2509. doi: 10.1021/j100185a023
[37] Giefers H, Pravica M. Radiation-induced decomposition of PETN and TATB under extreme conditions[J]. J Phys Chem A, 2008, 112(15): 3352-3359. doi: 10.1021/jp710512b
[38] Shackelford S, Coolidge M, Goshgarian B, et al. Deuterium isotope effects in condensed-phase thermochemical decomposition reactions of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine[J]. J Phys Chem, 1985, 89(14): 3118-3126. doi: 10.1021/j100260a034
[39] Lee J S, Jaw K S. Thermal decomposition properties and compatibility of CL-20, NTO with silicone rubber[J]. J Therm Anal Calorim, 2006, 85(2): 463-467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a253a19b9077282ee4c59ae5ae06effe
[40] Tarver C M, Koerner J G. Effects of endothermic binders on times to explosion of HMX-and TATB-based plastic bonded explosives[J]. J Energ Mater, 2007, 26(1): 1-28. doi: 10.1080/07370650701719170
[41] Tarver C M, Tran T D. Thermal decomposition models for HMX-based plastic bonded explosives[J]. Combust Flame, 2004, 137(1/2): 50-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05dc31b67b9e0367564de77ad0e839fd
[42] Chaturvedi S, Dave P N. Review on thermal decomposition of ammonium nitrate[J]. J Energ Mater, 2012, 31(1): 1-26. doi: 10.1080/07370652.2011.573523
[43] Urtiew P A, Tarver C M. Shock initiation of energetic materials at different initial temperatures(Review)[J]. Combust, Explos, Shock Waves, 2005, 41(6): 766-776. doi: 10.1007/s10573-005-0085-0
[44] Walley S M, Field J E, Greenaway M W. Crystal sensitivities of energetic materials[J]. Mater Sci Tech, 2006, 22(4): 402-413. doi: 10.1179/174328406X91122
[45] Davies A G, Burnett A D, Fan W, et al. Terahertz spectroscopy of explosives and drugs[J]. Mater Today, 2008, 11(3): 18-26. doi: 10.1016/S1369-7021(08)70016-6
[46] Sorescu D C, Rice B M, Thompson D L. A transferable intermolecular potential for nitramine crystals[J]. J Phys Chem A, 1998, 102(43): 8386-8392. doi: 10.1021/jp9820525
[47] Sorescu D C, Rice B M, Thompson D L. Theoretical studies of solid nitromethane[J]. J Phys Chem B, 2000, 104(35): 8406-8419. doi: 10.1021/jp000942q
[48] 赵纪军, 刘红, 龚自正, 等.有机分子晶体的从头算研究[J].含能材料, 2004, z2: 497-504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl2004z2040

Zhao J J, Liu H, Gong Z Z, et al. Ab initio studies of organic molecular crystals: A literature review[J]. Chinese Journal of Energetic Materials, 2004, z2: 497-504. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl2004z2040
[49] Manaa M R, Fried L, Reed E. Explosive chemistry: Simulating the chemistry of energetic materials at extreme conditions[J]. J Comput-Aided Mater Design, 2003, 10(2): 75-97. doi: 10.1023/B:JCAD.0000036812.64349.15
[50] 肖鹤鸣, 朱卫华, 肖继军, 等.含能材料感度判别理论研究——从分子、晶体到复合材料[J].含能材料2012, 20(5): 514-527.

Xiao H M, Zhu W H, Xiao J J, et al. Theoretical studies on sensitivity criterion of energetic materials-From molecules, crystals, to composite materials[J]. Chinese Journary of Energetic Materials, 2012, 20(5): 514-527. (in Chinese)
[51] Chakraborty D, Muller R P, Dasgupta S, et al. The mechanism for unimolecular decomposition of RDX(1, 3, 5-trinitro-1, 3, 5-triazine), an ab initio study[J]. J Phys Chem A, 2000, 104(11): 2261-2272. doi: 10.1021/jp9936953
[52] Chakraborty D, Muller R P, Dasgupta S, et al. Mechanism for unimolecular decomposition of HMX(1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine), an ab initio study[J]. J Phys Chem A, 2001, 105(8): 1302-1314. doi: 10.1021/jp0026181
[53] Chakraborty D, Muller R, Dasgupta S, et al. A detailed model for the decomposition of nitramines: RDX and HMX[J]. J Comput-Aided Mater Design, 2001, 8(2/3): 203-212. doi: 10.1023/A:1020074113000
[54] Hablot O, Soulard L. Shock decomposition of nitromethane[J]. AIP Conf Proc, 2000, 505(1): 857-860.
[55] Booth R S, Butler L J. Thermal decomposition pathways for 1, 1-diamino-2, 2-dinitroethene(FOX-7)[J]. J Chem Phys, 2014, 141(13): 134315. doi: 10.1063/1.4896165
[56] Irikura K K. Aminoxyl(Nitroxyl)radicals in the early decomposition of the nitramine RDX[J]. J Phys Chem A, 2013, 117(10): 2233-2241. doi: 10.1021/jp310247z
[57] Sharia O, Kuklja M M. Modeling thermal decomposition mechanisms in gaseous and crystalline molecular materials: Application to β-HMX[J]. J Phys Chem B, 2011, 115(44): 12677-12686. doi: 10.1021/jp202733d
[58] Sharia O, Kuklja M M. Comparative analysis of decomposition reactions in gaseous and crystalline β-HMX[J]. AIP Conf Proc, 2012, 1426(1): 1223-1226.
[59] Xiao H M, Ju X H, Xu L N, et al. A density-functional theory investigation of 3-nitro-1, 2, 4-triazole-5-one dimers and crystal[J]. J Chem Phys, 2004, 121(24): 12523-12531. doi: 10.1063/1.1812258
[60] Qiu L, Gong X D, Xiao H M. Theoretical studies on thermolysis mechanism and stability of trans-1, 4, 5, 8-tetranitro-1, 4, 5, 8-tetraazadecalin isomers[J]. Chin J Chem, 2008, 26(12): 2165-2172. doi: 10.1002/cjoc.200890386
[61] Zhang S, Truong T N. Branching ratio and pressure dependent rate constants of multichannel unimolecular decomposition of gas-phase α-HMX: An ab initio dynamics study[J]. J Phys Chem A, 2001, 105(11): 2427-2434. doi: 10.1021/jp0043064
[62] Kuklja M M, Rashkeev S N, Zerilli F J. Shear-strain induced decomposition of 1, 1-diamino-2, 2-dinitroethylene[J]. Appl Phys Lett, 2006, 89(7): 071904. doi: 10.1063/1.2335680
[63] Kuklja M M, Rashkeev S N. Shear-strain-induced structural and electronic modifications of the molecular crystal 1, 1-diamino-2, 2-dinitroethylene: Slip-plane flow and band gap relaxation[J]. Phys Rev B, 2007, 75(10): 104111. doi: 10.1103/PhysRevB.75.104111
[64] Zhang C. Stress-induced activation of decomposition of organic explosives: A simple way to understand[J]. J Mol Model, 2013, 19(1): 477-483. doi: 10.1007/s00894-012-1575-0
[65] Tsyshevsky R V, Sharia O, Kuklja M M. Thermal decomposition mechanisms of nitroesters: Ab initio modeling of pentaerythritol tetranitrate[J]. J Phys Chem C, 2013, 117(35): 18144-18153. doi: 10.1021/jp407754q
[66] Melius C. Molecular decomposition mechanisms of energetic materials[J]. J Phys Colloques, 1987, 48(C4): 341-352. http://www.researchgate.net/publication/45573685_MOLECULAR_DECOMPOSITION_MECHANISMS_OF_ENERGETIC_MATERIALS
[67] Melius C F, Binkley J S. Thermochemistry of the decomposition of nitramines in the gas phase[J]. Sympos(Int)Combus, 1988, 21(1): 1953-1963. http://www.sciencedirect.com/science/article/pii/S0082078488804326
[68] Kuklja M M. Thermal decomposition of solid cyclotrimethylene trinitramine[J]. J Phys Chem B, 2001, 105(42): 10159-10162. doi: 10.1021/jp011563f
[69] Kuklja M M, Tsyshevsky R V, Sharia O. Effect of polar surfaces on decomposition of molecular materials[J]. J Am Chem Soc, 2014, 136(38): 13289-13302. doi: 10.1021/ja506297e
[70] Kimmel A V, Sushko P V, Kuklja M M. The structure and decomposition chemistry of isomer defects in a crystalline DADNE[J]. J Energ Mater, 2010, 28(sup1): 128-139. doi: 10.1080/07370651003639389
[71] Sharia O, Kuklja M M. Surface-enhanced decomposition kinetics of molecular materials illustrated with cyclotetramethylene-tetranitramine[J]. J Phys Chem C, 2012, 116(20): 11077-11081. doi: 10.1021/jp301723j
[72] Sharia O, Tsyshevsky R, Kuklja M M. Surface-accelerated decomposition of δ-HMX[J]. J Phys Chem Lett, 2013, 4(5): 730-734. doi: 10.1021/jz302166p
[73] Zhang C, Li Y, Xiong Y, et al. Acid and alkali effects on the decomposition of HMX molecule: A computational study[J]. J Phys Chem A, 2011, 115(43): 11971-11978. doi: 10.1021/jp204698b
[74] Wang L, Tuo X, Yi C, et al. Ab initio calculations of the effects of H+ and NH4+ on the initial decomposition of HMX[J]. J Mol Graphics Modell, 2008, 27(3): 388-393. doi: 10.1016/j.jmgm.2008.06.007
[75] Sharia O, Kuklja M M. Ab initio kinetics of gas phase decomposition reactions[J]. J Phys Chem A, 2010, 114(48): 12656-12661. doi: 10.1021/jp108065c
[76] He W, Zhou G, Li J, et al. Molecular design of analogues of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide[J]. J Molec Struc: Theochem, 2004, 668(2/3): 201-208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b3064c54ae292ea0c9d83b2bb61d7ed4
[77] Mota O U O, Çan T. Anisotropic behavior of energetic materials at elevated pressure and temperature[J]. J Loss Prevent Proc, 2011, 24(6): 805-813. http://www.sciencedirect.com/science/article/pii/S0950423011000878
[78] Liu H, Zhao J, Ji G, et al. Compressibility of liquid nitromethane in the high-pressure regime[J]. Physica B, 2006, 382(1/2): 334-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa0466c1f2aeb3c2647bca85d003d62c
[79] Chambers C C, Thompson D L. Further studies of the classical dynamics of the unimolecular dissociation of RDX[J]. J Phys Chem, 1995, 99(43): 15881-15889. doi: 10.1021/j100043a029
[80] Guo Y, Thompson D L. Theoretical studies of the decomposition of RDX in liquid xenon[J]. J Phys Chem B, 1999, 103(48): 10599-10603. doi: 10.1021/jp992096t
[81] Kohno Y, Ueda K, Imamura A. Molecular dynamics simulations of initial decomposition process on the unique N—N bond in nitramines in the crystalline state[J]. J Phys Chem, 1996, 100(12): 4701-4712. doi: 10.1021/jp9503223
[82] Losada M, Chaudhuri S. Transport in aluminized RDX under shock compression explored using molecular dynamics simulations[J]. J Phys Conf Ser, 2014, 500(16): 162002. doi: 10.1088/1742-6596/500/16/162002
[83] Zhu W, Huang H, Huang H, et al. Initial chemical events in shocked octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine: A new initiation decomposition mechanism[J]. J Chem Phys, 2012, 136(4): 044516. doi: 10.1063/1.3679384
[84] Boyd S, Murray J S, Politzer P. Molecular dynamics characterization of void defects in crystalline(1, 3, 5-trinitro-1, 3, 5-triazacyclohexane)[J]. J Chem Phys, 2009, 131(20): 204903. doi: 10.1063/1.3265986
[85] Duan X, Li W, Pei C, et al. Molecular dynamics simulations of void defects in the energetic material HMX[J]. J Mol Model, 2013, 19(9): 3893. doi: 10.1007/s00894-013-1924-7
[86] Qiu L, Zhu W H, Xiao J J, et al. Molecular dynamics simulations of trans-1, 4, 5, 8-tetranitro-1, 4, 5, 8-tetraazadecalin-based polymer-bonded explosives[J]. J Phys Chem B, 2007, 111(7): 1559-1566. doi: 10.1021/jp065430b
[87] Qiu L, Xiao H. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs[J]. J Hazard Mater, 2009, 164(1): 329-336. doi: 10.1016/j.jhazmat.2008.08.030
[88] Xu X, Xiao J, Huang H, et al. Molecular dynamic simulations on the structures and properties of ε-CL-20(001)/F2314 PBX[J]. J Hazard Mater, 2010, 175(1/3): 423-428. http://www.ncbi.nlm.nih.gov/pubmed/19954888
[89] Li M, Li F, Shen R, et al. Molecular dynamics study of the structures and properties of RDX/GAP propellant[J]. J Hazard Mater, 2011, 186(2/3): 2031-2036. http://www.europepmc.org/abstract/MED/21237558
[90] van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. J Phys Chem A, 2001, 105(41): 9396-9409. doi: 10.1021/jp004368u
[91] Strachan A, Kober E M, van Duin A C T, et al. Thermal decomposition of RDX from reactive molecular dynamics[J]. J Chem Phys, 2005, 122(5): 054502. doi: 10.1063/1.1831277
[92] Zhang L, Zybin S V, van Duin A C T, et al. Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations[J]. J Phys Chem A, 2009, 113(40): 10619-10640. doi: 10.1021/jp901353a
[93] Han S P, van Duin A C T, Goddard W A, et al. Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics[J]. J Phys Chem B, 2011, 115(20): 6534-6540. doi: 10.1021/jp1104054
[94] Rom N, Zybin S V, van Duin A C T, et al. Density-dependent liquid nitromethane decomposition: Molecular dynamics simulations based on ReaxFF[J]. J Phys Chem A, 2011, 115(36): 10181-10202. doi: 10.1021/jp202059v
[95] 刘海, 李启楷, 何远航. CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟[J].物理学报, 2013, 62(20): 208202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201320067

Liu H, Li Q K, He Y H. Pyrolysis of CL20-TNT cocrystal from ReaxFF/lg reactive molecular dynamics simulations[J]. Acta Phys Sin, 2013, 62(20): 208202. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201320067
[96] 刘海, 董晓, 何远航. TNT高温热解及含碳团簇形成的反应分子动力学模拟[J].物理化学学报, 2014, 30(2): 232-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201402005

Liu H, Dong X, He Y H. Reactive molecular dynamics simulations of carbon-containing clusters formation during pyrolysis of Tnt[J]. Acta Phys-Chim Sin, 2014, 30(2): 232-240. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201402005
[97] Furman D, Kosloff R, Dubnikova F, et al. Decomposition of condensed phase energetic materials: Interplay between uni-and bimolecular mechanisms[J]. J Am Chem Soc, 2014, 136(11): 4192-4200. doi: 10.1021/ja410020f
[98] Zhou T T, Huang F L. Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations[J]. J Phys Chem B, 2011, 115(2): 278-287. doi: 10.1021/jp105805w
[99] Zhou T, Song H, Liu Y, et al. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation[J]. Phys Chem Chem Phys, 2014, 16(27): 13914-13931. doi: 10.1039/c4cp00890a
[100] 张力, 陈朗.高压下固相硝基甲烷分解的分子动力学计算[J].物理学报, 2013, 62(13): 138201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201313069

Zhang L, Chen L. The effect of pressure on thermal decomposition of solid nitromethane via MD simulation[J]. Acta Phys Sin, 2013, 62(13): 138201. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201313069
[101] Strachan A, van Duin A C T, Chakraborty D, et al. Shock waves in high-energy materials: The initial chemical events in nitramine RDX[J]. Phys Rev Lett, 2003, 91(9): 098301. doi: 10.1103/PhysRevLett.91.098301
[102] Zhou T, Zybin S V, Liu Y, et al. Anisotropic shock sensitivity forβ-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine energetic material under compressive-shear loading from ReaxFF-lg reactive dynamics simulations[J]. J Appl Phys, 2012, 111(12): 124904. doi: 10.1063/1.4729114
[103] Shan T R, van Duin A C T, Thompson A P. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition[J]. J Phys Chem A, 2014, 118(8): 1469-1478. doi: 10.1021/jp408397n
[104] Guo F, Cheng X L, Zhang H. Reactive molecular dynamics simulation of solid nitromethane impact on(010)surfaces induced and nonimpact thermal decomposition[J]. J Phys Chem A, 2012, 116(14): 3514-3520. doi: 10.1021/jp211914e
[105] 张力, 陈朗, 王晨, 等.水分子对α相CL-20热分解机理影响的分子动力学研究[J].物理化学学报2013, 29(6): 1145-1153.

Zhang L, Chen L, Wang C, et al. Molecular dynamics study of the effect of H2O on the thermal decomposition of α phase CL-20[J]. Acta Phys-Chim Sin, 2013, 29(6): 1145-1153. (in Chinese)
[106] Wood M A, van Duin A C, Strachan A. Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX; a reactive molecular dynamics study[J]. J Phys Chem A, 2014, 118(5): 885-895. doi: 10.1021/jp406248m
[107] Zhang L. Thermal decomposition of plastic bonded explosives by molecular dynamic simulations with the ReaxFF force field[C]//APS March Meeting. Los Angeles, 2005.
[108] Zhang L, Zybin S V, van Duin A C T, et al. Thermal decomposition of energetic materials by ReaxFF reactive molecular dynamics[J]. AIP Conf Proc, 2006, 845(1): 589-592. http://meetings.aps.org/link/BAPS.2005.SHOCK.E5.4
[109] Politzer P, Boyd S. Molecular dynamics simulations of energetic solids[J]. Struct Chem, 2002, 13(2): 105-113. doi: 10.1023/A:1015748330357
[110] Tuckerman M E, Klein M L. Ab initio molecular dynamics study of solid nitromethane[J]. Chem Phys Lett, 1998, 283(3/4): 147-151. http://www.sciencedirect.com/science/article/pii/S0009261497013638
[111] Zhu W, Xiao H. Ab initio molecular dynamics study of temperature effects on the structure and stability of energetic solid silver azide[J]. J Phys Chem C, 2011, 115(42): 20782-20787. doi: 10.1021/jp206290k
[112] Wu Q, Zhu W, Xiao H. Comparative DFT-and DFT-D-based molecular dynamics studies of pressure effects in crystalline 1, 3, 5-triamino-2, 4, 6-trinitrobenzene at room temperature[J]. RSC Advances, 2014, 4(95): 53149-53156. doi: 10.1039/C4RA09123J
[113] Manaa M R, Kuo I F W, Fried L E. First-principles high-pressure unreacted equation of state and heat of formation of crystal 2, 6-diamino-3, 5-dinitropyrazine-1-oxide(LLM-105)[J]. J Chem Phys, 2014, 141(6): 064702. doi: 10.1063/1.4891933
[114] Yim W L, Liu Z f. Application of ab initio molecular dynamics for a priori elucidation of the mechanism in unimolecular decomposition: The case of 5-nitro-2, 4-dihydro-3h-1, 2, 4-triazol-3-one(NTO)[J]. J Am Chem Soc, 2001, 123(10): 2243-2250. doi: 10.1021/ja0019023
[115] Isayev O, Gorb L, Qasim M, et al. Ab initio molecular dynamics study on the initial chemical events in nitramines: Thermal decomposition of CL-20[J]. J Phys Chem B, 2008, 112(35): 11005-11013. doi: 10.1021/jp804765m
[116] Wang H, Stalnaker J, Chevreau H, et al. Potential of mean force calculations using ab initio tight-binding molecular dynamics: Application to N-NO2 bond dissociation in DMNA and HMX[J]. Chem Phys Lett, 2008, 457(1/3): 26-30. http://www.sciencedirect.com/science/article/pii/S0009261408004284
[117] Schweigert I V, Dunlap B I. Electronic structure and molecular dynamics of breaking the RO—NO2 bond[J]. J Chem Phys, 2009, 130(24): 244110. doi: 10.1063/1.3155081
[118] 熊鹰, 舒远杰, 周歌, 等.均四嗪热分解机理的从头算分子动力学模拟及密度泛涵理论研究[J].含能材料, 2006, 14(6): 421-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl200606005

Xiong Y, Shu Y J, Zhou G, et al. Thermal decomposition mechanism of s-tetrazine by ab initio molecular dynamics and density functional theory[J]. Chinese Journal of Energetic Materials, 2006, 14(6): 421-424. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl200606005
[119] 熊鹰, 舒远杰, 王新锋, 等.四嗪类高氮化合物结构对热分解机理影响的理论研究[J].火炸药学报, 2008, 31(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200801001

Xiong Y, Shu Y J, Wang X F, et al. Theoretical study on effect of tetrazine structures on their thermal decomposition mechanisms[J]. Chinese Journal of Explosives and Propellants, 2008, 31(1): 1-5. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200801001
[120] Wu Q, Zhu W, Xiao H. An ab initio molecular dynamics study of thermal decomposition of 3, 6-Di(azido)-1, 2, 4, 5-tetrazine[J]. Phys Chem Chem Phys, 2014, 16(39): 21620-21628. doi: 10.1039/C4CP02579B
[121] Manaa M R, Fried L E, Melius C F, et al. Decomposition of HMX at extreme conditions: A molecular dynamics simulation[J]. J Phys Chem A, 2002, 106(39): 9024-9029. doi: 10.1021/jp025668+
[122] An Q, Liu W G, Goddard W A, et al. Initial steps of thermal decomposition of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate crystals from quantum mechanics[J]. J Phys Chem C, 2014, 118(46): 27175-27181. doi: 10.1021/jp509582x
[123] Xu J, Zhao J, Sun L. Thermal decomposition behaviour of RDX by first-principles molecular dynamics simulation[J]. Mol Simulat, 2008, 34: 961-965. doi: 10.1080/08927020802162892
[124] Wight C A, Botcher T R. Thermal decomposition of solid RDX begins with nitrogen-nitrogen bond scission[J]. J Am Chem Soc, 1992, 114(21): 8303-8304. doi: 10.1021/ja00047a059
[125] Wu C J, Fried L E. Ab initio study of RDX decomposition mechanisms[J]. J Phys Chem A, 1997, 101(46): 8675-8679. doi: 10.1021/jp970678+
[126] Zhao J, Winey J M, Gupta Y M, et al. First-principles studies of RDX crystals under compression[J]. AIP Conf Proc, 2006, 845(1): 555-558. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026526808
[127] Manaa M R, Reed E J, Fried L E, et al. Early chemistry in hot and dense nitromethane: Molecular dynamics simulations[J]. J Chem Phys, 2004, 120(21): 10146-10153. doi: 10.1063/1.1724820
[128] Chang J, Lian P, Wei D Q, et al. Thermal decomposition of the solid phase of nitromethane: Ab initio molecular dynamics simulations[J]. Phys Rev Lett, 2010, 105(18): 188302. doi: 10.1103/PhysRevLett.105.188302
[129] Damianos K, Frank I. Car-parrinello molecular dynamics study of the thermal decomposition of sodium fulminate[J]. Chem-Eur J, 2010, 16(27): 8041-8046. doi: 10.1002/chem.200903076
[130] Liu Y, Li F, Sun H. Thermal decomposition of FOX-7 studied by ab initio molecular dynamics simulations[J]. Theor Chem Acc, 2014, 133(10): 1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b9b6a81738306e920b89e48bb453d9e6
[131] 徐京城, 赵纪军.液态硝基甲烷热分解行为及压力效应的第一性原理研究[J].物理学报, 2009, 58(6): 4144-4149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200906083

Xu J C, Zhao J J. First-principles study of thermal decomposition of liquid nitromethane and its compressive effect[J]. Acta Physica Sinca, 2009, 58(6): 4144-4149. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200906083
[132] Zheng Z Y, Xu J C, Zhao J J. First-principles studies on the thermal decomposition behavior of FOX-7[J]. High Pressure Res, 2010, 30(2): 301-309. doi: 10.1080/08957959.2010.485390
[133] Ye C C, An Q, Goddard W A, et al. Initial decomposition reactions of bicyclo-HMX[BCHMX or cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5-D]Imidazole]from quantum molecular dynamics simulations[J]. J Phys Chem C, 2015, 119(5): 2290-2296. doi: 10.1021/jp510328d
[134] Decker S A, Chau D, Woo T K, et al. Ab initio molecular dynamics simulations of nitromethane under shock initiation conditions[C]//Jiang Z. Shock Waves. Berlin: Springer, 2005: 1193-1198.
[135] Ge N N, Wei Y K, Ji G F, et al. Initial decomposition of the condensed-phase β-HMX under shock waves: Molecular dynamics simulations[J]. J Phys Chem B, 2012, 116(46): 13696-13704. doi: 10.1021/jp309120t
[136] Ge N N, Wei Y K, Song Z F, et al. Anisotropic responses and initial decomposition of condensed-phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multiscale shock technique[J]. J Phys Chem B, 2014, 118(29): 8691-8699. doi: 10.1021/jp502432g
[137] Ge N N, Wei Y K, Zhao F, et al. Pressure-induced metallization of condensed phase β-HMX under Shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique[J]. J Mol Model, 2014, 20(7): 2350. doi: 10.1007/s00894-014-2350-1
[138] Igor V S. Quantum mechanical simulations of condensed-phase decomposition dynamics in molten RDX[J]. J Phys: Conf Ser, 2014, 500(5): 052039. doi: 10.1088/1742-6596/500/5/052039
[139] Xu K, Wei D Q, Chen X R, et al. Thermal decomposition of solid phase nitromethane under various heating rates and target temperatures based on ab initio molecular dynamics simulations[J]. J Mol Model, 2014, 20(10): 2438. doi: 10.1007/s00894-014-2438-7
[140] Liu L M, Car R, Selloni A, et al. Enhanced thermal decomposition of nitromethane on functionalized graphene sheets: Ab initio molecular dynamics simulations[J]. J Am Chem Soc, 2012, 134(46): 19011-19016. doi: 10.1021/ja3058277