[1] 周林燕, 廖红梅, 张文佳, 等.食品高压技术研究进展和应用现状[J].中国食品学报, 2009, 9(4): 165-169. http://www.cnki.com.cn/Article/CJFDTotal-ZGSP200905029.htm

Zhou L Y, Liao H M, Zhang W J, et al. Review of high pressure technologies for food processing[J]. Journal of Chinese Institute of Food Science and Technology, 2009, 9(4): 165-169. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-ZGSP200905029.htm
[2] 廖小军.超高压技术在果蔬加工中大有可为[J].农业工程技术, 2009(9): 36-38. http://www.cnki.com.cn/Article/CJFDTotal-NYGN200909015.htm

Liao X J. HHP has bright prospect in fruit and vegetable processing[J]. Agriculture Engineering Technology, 2009(9): 36-38. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-NYGN200909015.htm
[3] 上官丽娟, 马永昆, 崔凤杰, 等.高压处理对辣根过氧化物酶活性及构象的影响[J].高压物理学报, 2011, 25(5): 475-480. http://www.cqvip.com/QK/96553X/20115/39721767.html

Shangguan L J, Ma Y K, Cui F J, et al. Effects of high pressure processing on the activity and the conformation of horseradish peroxidase[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 475-480. (in Chinese) http://www.cqvip.com/QK/96553X/20115/39721767.html
[4] 马汉军, 周光宏, 余小领, 等.高压与加热协同处理对牛肌肉中蛋白酶活性的影响[J].高压物理学报, 2011, 25(1): 89-96. http://www.cqvip.com/QK/96553X/201101/37267496.html

Ma H J, Zhou G H, Yu X L, et al. Effects of combined high pressure and thermal treatment on protease activities in beef muscle[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 89-96. (in Chinese) http://www.cqvip.com/QK/96553X/201101/37267496.html
[5] 陈小强, 章银军, 张士康, 等.超高压处理对毛栓菌多酚氧化酶的影响[J].高压物理学报, 2012, 26(2): 235-240. http://www.cqvip.com/QK/96553X/201202/41757138.html

Chen X Q, Zhang Y J, Zhang S K, et al. Effect of high pressure processing on polyphenol oxidase from trametes trogii[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 235-240. (in Chinese) http://www.cqvip.com/QK/96553X/201202/41757138.html
[6] Mozhaev V V, Heremans K, Frank J, et al. High pressure effects on protein structure and function[J]. Proteins Struct Funct Bioinf, 1996, 24(1): 81-91. doi: 10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R
[7] Silva J L, Foguel D, Royer C A. Pressure provides new insights into protein folding, dynamics and structure[J]. Trends Biochem Sci, 2001, 26(10): 612-618. doi: 10.1016/S0968-0004(01)01949-1
[8] Boonyaratanakornkit B B, Park C B, Clark D S. Pressure effects on intra-and intermolecular interactions within proteins[J]. Biochim Biophys Acta, 2002, 1595(1/2): 235-249. http://europepmc.org/abstract/MED/11983399
[9] Eisenmenger M J, Reyes-De-Corcuera J I. High pressure enhancement of enzymes: A review[J]. Enzyme Microb Technol, 2009, 45(5): 331-347. doi: 10.1016/j.enzmictec.2009.08.001
[10] Gross M, Jaenicke R. Proteins under pressure: The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes[J]. Eur J Biochem, 1994, 221(2): 617-630. doi: 10.1111/j.1432-1033.1994.tb18774.x
[11] 卜平宇, 夏泉.普通化学[M].北京: 科学出版社, 2009: 253.

Bu P Y, Xia Q. General Chemistry[M]. Beijing: Science Press, 2009: 253. (in Chinese)
[12] Bridgman P W. The Physics of High Pressure[M]. London: George Bell & Sons Ltd, 1931: 450.
[13] Gekko K, Hasegawa Y. Compressibility-structure relationship of globular proteins[J]. Biochemistry, 1986, 25(21): 6563-6571. doi: 10.1021/bi00369a034
[14] Prehoda K E, Mooberry E S, Markley J L. Pressure denaturation of proteins: Evaluation of compressibility effects[J]. Biochemistry, 1998, 37(17): 5785-5790. doi: 10.1021/bi980384u
[15] Vidugiris G J A, Royer C A. Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states[J]. Biophys J, 1998, 75(1): 463-470. doi: 10.1016/S0006-3495(98)77534-4
[16] Seemann H, Winter R, Royer C A. Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease[J]. J Mol Biol, 2001, 307(4): 1091-1102. doi: 10.1006/jmbi.2001.4517
[17] Roche J, Caro J A, Norberto D R, et al. Cavities determine the pressure unfolding of proteins[J]. Proc Natl Acad Sci, 2012, 109(18): 6945-6950. doi: 10.1073/pnas.1200915109
[18] Visser A, Li T M, Drickamer H G, et al. Effect of pressure upon the fluorescence of various flavodoxins[J]. Biochemistry, 1977, 16(22): 4879-4882. doi: 10.1021/bi00641a020
[19] Zipp A, Kauzmann W. Pressure denaturation of metmyoglobin[J]. Biochemistry, 1973, 12(21): 4217-4228. doi: 10.1021/bi00745a028
[20] Kornblatt J A, Hui Bon Hoa G, Heremans K. Pressure-induced effects on cytochrome oxidase: The aerobic steady state[J]. Biochemistry, 1988, 27(14): 5122-5128. doi: 10.1021/bi00414a026
[21] Fuentes E J, Wand A J. Local stability and dynamics of apocytochrome b562 examined by the dependence of hydrogen exchange on hydrostatic pressure[J]. Biochemistry, 1998, 37(28): 9877-9883. doi: 10.1021/bi980894o
[22] Collins M D, Quillin M L, Hummer G, et al. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography[J]. J Mol Biol, 2007, 367(3): 752-763. doi: 10.1016/j.jmb.2006.12.021
[23] Abe F, Kato C, Horikoshi K. Pressure-regulated metabolism in microorganisms[J]. Trends Microbiol, 1999, 7(11): 447-453. doi: 10.1016/S0966-842X(99)01608-X
[24] Heremans L, Heremans K. Raman spectroscopic study of the changes in secondary structure of chymotrypsin: Effect of pH and pressure on the salt bridge[J]. Biochim Biophys Acta, 1989, 999(2): 192-197. doi: 10.1016/0167-4838(89)90217-3
[25] Hei D J, Clark D S. Pressure stabilization of proteins from extreme thermophiles[J]. Appl Environ Microbiol, 1994, 60(3): 932-939. doi: 10.1128/AEM.60.3.932-939.1994
[26] Day R, García A E. Water penetration in the low and high pressure native states of ubiquitin[J]. Proteins Struct Funct Bioinf, 2008, 70(4): 1175-1184. doi: 10.1002/prot.21562
[27] Dadarlat V M, Post C B. Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions[J]. Biophys J, 2006, 91(12): 4544-4554. doi: 10.1529/biophysj.106.087726
[28] 王镜岩.生物化学[M].北京: 高等教育出版社, 2002: 626.

Wang J Y. Biochemistry[M]. Beijing: Higher Education Press, 2002: 626. (in Chinese)
[29] Hayert M, Perrier-Cornet J M, Gervais P. A simple method for measuring the pH of acid solutions under high pressure[J]. J Phys Chem A, 1999, 103(12): 1785-1789. doi: 10.1021/jp983204z
[30] Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy[J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780. doi: 10.1073/pnas.90.5.1776
[31] Imai T, Sugita Y. Dynamic correlation between pressure-induced protein structural transition and water penetration[J]. J Phys Chem B, 2010, 114(6): 2281-2286. doi: 10.1021/jp909701j
[32] Collins M D, Hummer G, Quillin M L, et al. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation[J]. Proc Natl Acad Sci, 2005, 102(46): 16668-16671. doi: 10.1073/pnas.0508224102
[33] Hédoux A, Guinet Y, Paccou L. Analysis of the mechanism of lysozyme pressure denaturation from Raman spectroscopy investigations, and comparison with thermal denaturation[J]. J Phys Chem B, 2011, 115(20): 6740-6748. doi: 10.1021/jp2014836
[34] Grigera J R, McCarthy A N. The behavior of the hydrophobic effect under pressure and protein denaturation[J]. Biophys J, 2010, 98(8): 1626-1631. doi: 10.1016/j.bpj.2009.12.4298
[35] Ando N, Barstow B, Baase W A, et al. Structural and thermodynamic characterization of T4 lysozyme mutants and the contribution of internal cavities to pressure denaturation[J]. Biochemistry, 2008, 47(42): 11097-11109. doi: 10.1021/bi801287m
[36] Akasaka K, Li H, Yamada H, et al. Pressure response of protein backbone structure: Pressure-induced amide 15N chemical shifts in BPTI[J]. Protein Sci, 1999, 8(10): 1946-1953. doi: 10.1110/ps.8.10.1946
[37] Girard E, Marchal S, Perez J, et al. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure[J]. Biophys J, 2010, 98(10): 2365-2373. doi: 10.1016/j.bpj.2010.01.058
[38] Le Tilly V, Sire O, Alpert B, et al. An infrared study of 2H-bond variation in myoglobin revealed by high pressure[J]. Eur J Biochem, 1992, 205(3): 1061-1065. doi: 10.1111/j.1432-1033.1992.tb16874.x
[39] Kangur L, Timpmann K, Freiberg A. Stability of integral membrane proteins under high hydrostatic pressure: The LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria[J]. J Phys Chem B, 2008, 112(26): 7948-7955. doi: 10.1021/jp801943w
[40] Hummer G, Garde S, García A E, et al. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins[J]. Proc Natl Acad Sci, 1998, 95(4): 1552-1555. doi: 10.1073/pnas.95.4.1552
[41] Hemley R J. Effects of high pressure on molecules[J]. Annu Rev Phys Chem, 2000, 51: 763-800. doi: 10.1146/annurev.physchem.51.1.763
[42] Chen W, Heymann G, Kursula P, et al. Effects of gigapascal level pressure on protein structure and function[J]. J Phys Chem B, 2012, 116(3): 1100-1110. doi: 10.1021/jp207864c
[43] Subirade M, Loupil F, Allain A, et al. Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by Fourier transform infrared spectroscopy[J]. Int Dairy J, 1998, 8(2): 135-140. doi: 10.1016/S0958-6946(98)00034-X
[44] Ngarize S, Herman H, Adams A, et al. Comparison of changes in the secondary structure of unheated, heated, and high-pressure-treated β-lactoglobulin and ovalbumin proteins using fourier transform raman spectroscopy and self-deconvolution[J]. J Agric Food Chem, 2004, 52(21): 6470-6477. doi: 10.1021/jf030649y
[45] Rouget J B, Schroer M A, Jeworrek C, et al. Unique features of the folding landscape of a repeat protein revealed by pressure perturbation[J]. Biophys J, 2010, 98(11): 2712-2721. doi: 10.1016/j.bpj.2010.02.044
[46] Takeda N, Kato M, Taniguchi Y. Pressure-and thermally-induced reversible changes in the secondary structure of ribonuclease: A studied by FT-IR spectroscopy[J]. Biochemistry, 1995, 34(17): 5980-5987. doi: 10.1021/bi00017a027
[47] 阎隆飞, 孙之荣.蛋白质分子结构[M].北京: 清华大学出版社, 1999: 334.

Yan L F, Sun Z R. Structure of Proteins[M]. Beijing: Tsinghua University Press, 1999: 334. (in Chinese)
[48] Knorr D, Heinz V, Buckow R. High pressure application for food biopolymers[J]. Biochim Biophys Acta, 2006, 1764(3): 619-631. doi: 10.1016/j.bbapap.2006.01.017
[49] Tschirret-Guth R A, Hoa G H B, de Montellano P R O. Pressure-induced deformation of the cytochrome P450cam active site[J]. J Am Chem Soc, 1998, 120(15): 3590-3596. doi: 10.1021/ja973909z
[50] Tschirret-Guth R A, Koo L S, Hoa G H, et al. Reversible pressure deformation of a thermophilic cytochrome P450 enzyme(CYP119)and its active-site mutants[J]. J Am Chem Soc, 2001, 123(15): 3412-3417. doi: 10.1021/ja003947+
[51] Li H, Yamada H, Akasaka K. Effect of pressure on the tertiary structure and dynamics of folded basic pancreatic trypsin inhibitor[J]. Biophys J, 1999, 77(5): 2801-2812. doi: 10.1016/S0006-3495(99)77112-2
[52] Peng X, Jonas J, Silva J L. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy[J]. Proc Natl Acad Sci, 1993, 90(5): 1776-1780. doi: 10.1073/pnas.90.5.1776
[53] King L, Weber G. Conformational drift of dissociated lactate dehydrogenases[J]. Biochemistry, 1986, 25(12): 3632-3637. doi: 10.1021/bi00360a023
[54] Silva J L, Miles E W, Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase[J]. Biochemistry, 1986, 25(19): 5780-5786. doi: 10.1021/bi00367a065
[55] Ruan K, Weber G. Dissociation of yeast hexokinase by hydrostatic pressure[J]. Biochemistry, 1988, 27(9): 3295-3301. doi: 10.1021/bi00409a026
[56] Panda M, Ybarra J, Horowitz P M. High hydrostatic pressure can probe the effects of functionally related ligands on the quaternary structures of the chaperonins GroEL and GroES[J]. J Biol Chem, 2001, 276(9): 6253-6259. doi: 10.1074/jbc.M009530200
[57] Paladini A A Jr, Weber G. Pressure-induced reversible dissociation of enolase[J]. Biochemistry, 1981, 20(9): 2587-2593. doi: 10.1021/bi00512a034
[58] Royer C A, Weber G, Daly T J, et al. Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure[J]. Biochemistry, 1986, 25(25): 8308-8315. doi: 10.1021/bi00373a027
[59] Rietveld A W, Ferreira S T. Deterministic pressure dissociation and unfolding of triose phosphate isomerase: Persistent heterogeneity of a protein dimer[J]. Biochemistry, 1996, 35(24): 7743-7751. doi: 10.1021/bi952118b
[60] Ruan K, Weber G. Hysteresis and conformational drift of pressure-dissociated glyceraldehydephosphate dehydrogenase[J]. Biochemistry, 1989, 28(5): 2144-2153. doi: 10.1021/bi00431a028
[61] Peng X, Jonas J, Silva J L. High-pressure NMR study of the dissociation of Arc repressor[J]. Biochemistry, 1994, 33(27): 8323-8329. doi: 10.1021/bi00193a020