[1] Shenderova O A, Zhirnov V V, Brenner D W. Carbon nanostructure [J]. Crit Rev Solid State, 2002, 27(3/4): 227-256.
[2] Ruoff R S, Lorents D C, Chan B, et al. Single-crystal metals encapsulated in carbon nanoparticles [J]. Science, 1993, 259(5093): 346-348.
[3] Saito Y, Yoshikawa T, Okuda M, et al. Cobalt particles wrapped in graphitic carbon prepared by an arc discharge method [J]. J Appl Phys, 1994, 75(1): 134-139.
[4] Saito Y. Nanoparticles and filled nanocapsules [J]. Carbon, 1995, 33(7): 979-88.
[5] Dai J Y, Lauerhaas J M, Setlur A A, et al. Synthesis of graphite-encapsulated nanowires using polycyclic aromatic hydrocarbon precursors [J]. Chem Phys Lett, 1996, 258(5-6): 547-553.
[6] Bin X, Chen J, Cao H, et al. Preparation of graphene encapsulated copper nanoparticles from CuCl2-GIC [J]. J Phys Chem Solids, 2009, 70(1): 1-7.
[7] Li H, Kang W, Xi B, et al. Thermal synthesis of Cu@carbon spherical core-shell structures from carbonaceous matrices containing embedded copper particles [J]. Carbon, 2010, 48(2): 464-469.
[8] Polidori G, Fohanno S, Nguyen C T. A note on heat transfer modeling of Newtonian nanofluids in laminar free convection [J]. Int J Therm Sci, 2007, 46(8): 739-744.
[9] Heris S Z, Esfahany M N, Eternad S G. Experimental investigation of convective heat transfer of Al2O3/Water nanofluid in circular tube [J]. Int J Heat Fluid Flow, 2007, 28(2): 203-210.
[10] William E. Role of brownian motion hydrodynamics on nanofluid thermal conductivity [J]. Appl Phys Lett, 2006, 88(9): 116-120.
[11] Sabino V V, Yann L, Rocio C. Continuous production of inorganic magnetic nanocomposites for biomedical applications by laser pyrolysis [J]. J Magn Magn Mater, 2007, 311(1): 120-124.
[12] Greiner N R, Phillips D S, Johnson J D. Diamond in detonation soot [J]. Nature, 1988, 333(6172): 440-441.
[13] Frank A C. Microstructural characterisation of nanocrystalline GaN prepared by detonations of gallium azides [J]. Adv Mater Opt Electron, 1998, 8(3): 135-146.
[14] Bukaemskii A A, Avramenko S S, Tarasoval L S. Ultra-Al2O3 explosive method of synthesis and properties [J]. Combustion Explosion and Shock Waves, 2002, 38(4): 478- 483.
[15] Lu Y, Zhu Z P, Liu Z Y. Graphite-encapsulated Fe nanoparticles from detonation- induced pyrolysis of ferrocene [J]. Carbon, 2005, 43(2): 369-74.
[16] Sun G L, Li X J, Zhang Y J. A simple detonation technique to synthesize carbon-coated cobalt [J]. J Alloys Compounds, 2009, 473(1/2): 212-214.
[17] Luo N, Li X J, Wang X H, et al. Preparation and magnetic behavior of graphite-encapsulated iron nanoparticles by detonation method [J]. Compos Sci Technol, 2009, 69(11/12): 2554-2558.
[18] Luo N, Li X J, Yan H H, et al. Detonation synthesis of encapsulated cobalt/nickel nanoparticles [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 415-420. (in Chinese)
[19] 罗宁, 李晓杰, 闫鸿浩, 等. 爆轰合成碳包覆钴、镍磁性纳米颗粒的探索 [J]. 高压物理学报, 2009, 23(6): 415-420.
[20] Luo N, Li X J, Sun Y L, et al. Synthesis and characteristic of graphite-encapsulated ferronickel nanoparticles by detonation decomposition of doping with nitrate explosive precursors [J]. J Alloys Compounds, 2010, 505(1): 352-356.
[21] Luo N, Li X J, Wang X H, et al. Synthesis and characterization of graphite-encapsulated iron/iron carbide nanoparticles by a detonation method [J]. Carbon, 2010, 48(13): 3858-3863.
[22] Xu B S. Nano Materials and Application Technology [M]. Beijing: Chemical Industry Press, 2004. (in Chinese)
[23] 许并社. 纳米材料及应用技术 [M]. 北京: 化学工业出版社, 2004.
[24] Ferrari A C. Raman Dpectroscopy in Carbons: From Nanotubes Diamond [M]. London: The Royal Society, 2006.
[25] Piscanec S, Lazzeri M, Mauri F. First- and second-order Raman scattering from finite-size crystals of graphite [J]. Phys Rev Lett, 2004, 91(8): 087402-087409.
[26] Luo N. Research on detonation synthesis of graphite-encapsulated metal nanomaterials [D]. Dalian: Dalian University of Technology , 2011. (in Chinese)
[27] 罗宁. 爆轰法合成碳包覆金属纳米材料的研究 [D]. 大连: 大连理工大学, 2011.
[28] Mader C L. Numerial Modeling of Explosives and Propellants [M]. 3nd ed. New York: CRC Press, 2008.