[1] Sundqvist B. Fullerenes under high pressures [J]. Adv Phys, 1999, 48(1): 1-134.
[2] Burgos E, Halac E, Weht R, et al. New superhard phases for three-dimensional C60-based Fullerites [J]. Phys Rev Lett, 2000, 85(11): 2328.
[3] Hu M, Zhao Z S, Tian F, et al. Compressed carbon nanotubes: A family of new multifunctional carbon allotropes [J/OL]. Scientific Reports, 013, 3: 1331. http: //www. nature. com/srep/2013/130225/srep01331/pdf/srep01331. pdf.
[4] Wang L, Liu B, Liu D, et al. Synthesis of thin, rectangular C60 nanorods using m-xylene as a shape controller [J]. Adv Mater, 2006, 18(14): 1883-1888.
[5] Wang L, Liu B B, Yu S D, et al. Highly enhanced luminescence from single-crystalline C601m-xylene nanorods [J]. Chem Mater, 2006, 18(17): 4190-4194.
[6] Yao M G, Fan X H, Liu D D, et al. Synthesis of differently shaped C70 nano/microcrystals by using various aromatic solvents and their crystallinity-dependent photoluminescence [J]. Carbon, 2012, 50(1): 209-215.
[7] Yao M G, Du M R, Liu B B. Controllable synthesis of fullerene nano/microcrystals and their structural transformation induced by high pressure [J]. Chinese Phys B, 2013, 22(9): 098109.
[8] Lu S C, Yao M G, Yang X G, et al. High pressure transformation of graphene nanoplates: A Raman study [J]. Chem Phys Lett, 2013, 585: 101-106.
[9] Wang L, Liu B B, Liu D D, et al. Synthesis and high pressure induced amorphization of C60 nanosheets [J]. Appl Phys Lett, 2007, 91(10): 103112.
[10] Liu D D, Yao M M, Li Q J, et al. In situ Raman and photoluminescence study on pressure-induced phase transition in C60 nanotubes [J]. J Raman Spectrosc, 2012, 43(6): 737-740.
[11] Liu D D, Yao M G, Wang L, et al. Pressure-induced phase transitions of C70 nanotubes [J]. J Phys Chem C, 2011, 115(18): 8918-8922.
[12] Hou Y Y, Liu B B, Ma H A, et al. Pressure-induced polymerization of nano-and submicrometer C60 rods into a rhombohedral phase [J]. Chem Phys Lett, 2006, 423(1): 215-219.
[13] Yao M G, Wang Z G, Liu B B, et al. Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure [J]. Phys Rev B, 2008, 78(20): 205411.
[14] Zou Y G, Liu B B, Yao M G, et al. Raman spectroscopy study of carbon nanotube peapods excited by near-IR laser under high pressure [J]. Phys Rev B, 2007, 76(19): 195417.
[15] Zou Y G, Liu B B, Wang L C, et al. Rotational dynamics of confined C60 from near-infrared Raman studies under high pressure [J]. PNAS, 2009, 106(52): 22135-22138.
[16] Zou Y G, Liu B B, Yao M G, et al. Effective polymerization of C60 in SWNTs under high pressure and simultaneous UV light irradiation [J]. Acta Physica Sinica, 2007, 56(9): 5172-5175. (in Chinese)
[17] 邹永刚, 刘冰冰, 姚明光, 等. 紫外激光和压力共同作用下C60-peapod的聚合相变研究 [J]. 物理学报, 2007, 56(9): 5172-5175.
[18] Yao M G, Lu S C, Xiao J P, et al. Probing factors affecting the Raman modes and structural collapse of single-walled carbon nanotubes under pressure [J]. Phys Status Solid (b), 2013, 250(7): 1370-1375.
[19] Lu S C, Yao M G, Li Q J, et al. Exploring the possible interlinked structures in single-wall carbon nanotubes under pressure by Raman spectroscopy [J]. J Raman Spectrosc, 2013, 44(2): 176-182.
[20] Pintschovius L, Blaschko O, Krexner G, et al. Bulk modulus of C60 studied by single-crystal neutron diffraction [J]. Phys Rev B, 1999, 59(16): 11020-11026.
[21] Ludwig H A, Fietz W H, Hornung F W, et al. C60 under pressure-Bulk modulus and equation of state [J]. Z Phys B (Conden Matt), 1994, 96(2): 179-183.
[22] Wang Y, Tomanek D, Bertsch G F. Stiffness of a solid composed of C60 clusters [J]. Phys Rev B, 1991, 44(12): 6562-6565.
[23] Li X P, Lu J P, Martin R M. Ground-state structural and dynamical properties of solid C60 from an empirical intermolecular potential [J]. Phys Rev B, 1992, 46(7): 4301-4303.
[24] Wasa S, Suito K, Kobayashi M, et al. Pressure-induced irreversible amorphization of C70 fullerene [J]. Solid State Commun, 2000, 114(4): 209-213.
[25] Araujo P T, Barbosa Neto N M, Chacham H, et al. In situ atomic force microscopy tip-induced deformations and Raman spectroscopy characterization of single-wall carbon nanotubes [J]. Nano Lett, 2012, 12(8): 4110-4116.
[26] San-Miguel A, Cailler C, Machon D, et al. Carbon nanotubes under high pressure probed by resonance Raman scattering [C]//Boldyreva E, Dera P. High-Pressure Crystallography: From Fundamental Phenomena to Technological Applications. Netherlands: Springer Science, 2010: 435-446.
[27] Liu Z F, Zhang J, Gao B. Raman spectroscopy of strained single-walled carbon nanotubes [J]. Chem Commun, 2009(45): 6902-6918.
[28] Schindler T L, Vohra Y K. A micro-Raman investigation of high-pressure quenched graphite [J]. J Phys: Condens Matter, 1995, 7(47): L637.
[29] Kis A, Csnyi G, Salvetat J -P, et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging [J]. Nature Mater, 2004, 3: 153-157.
[30] Kawasaki S, Hara T, Yokomae T, et al. Pressure-polymerization of C60 molecules in a carbon nanotube [J]. Chem Phys Lett, 2006, 418: 260-263.