[1] Li J, Weng G J. A secant-viscosity composite model for the strain-rate sensitivity of nanocrystalline materials [J]. Int J Plastic, 2007, 23(12): 2115-2133.
[2] Xiao G H, Tao N R, Lu K. Effects of strain, strain rate and temperature on deformation twinning in a Cu-Zn alloy [J]. Scripta Mater, 2008, 59(9): 975-978.
[3] Wang H T, Yang W. Mechanical behavior of nanocrystalline metals [J]. Advances in Mechanics, 2004, 34(3): 314-326. (in Chinese)
[4] 王宏涛, 杨卫. 纳米晶金属的力学行为 [J]. 力学进展, 2004, 34(3): 314-326.
[5] Benkasse S, Capolungo L. Mechanical properties and multi-scale modeling of nanocrystalline materials [J]. Acta Mater, 2007(55): 3563-3572.
[6] Wang Y M, Wang K, Pan D, et al. Microsample tensile testing of nanocrystallinne cooper [J]. Scripta Mater, 2003, 48(12): 1581-1586.
[7] Zhang L D. Nanomaterials and nanotechnology in China: Current status of applicationand opportunities for commercialization [J]. Materials Review, 2001, 15(7): 2-5. (in Chinese)
[8] 张立德. 我国纳米材料技术应用的现状和产业化的机遇 [J]. 材料导报, 2001, 15(7): 2-5.
[9] Cai B, Kong Q P, Lu L, et al. Low temperature creep of nanocrystalline pure copper [J]. Mater Sci Eng A, 2000, 286(1): 188-192.
[10] Guduru R K, Murty K L, Youssef K M, et al. Mechanical behavior of nanocrystalline copper [J]. Mater Sci Eng A, 2007, 463(1-2): 14-21.
[11] Zheng C, Zhang Y W. Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature [J]. Mater Sci Eng A, 2007, 423(1-2): 97-101.
[12] Wang J X, Zhou N, Li B M, et al. Fabrication of nanocrystalline copper by explosive loading and its dynamic mechanics properties [J]. Combustion, Explosion and Shock Waves, 2011, 47(3): 369-373.
[13] Wang J X, Zhou N. Study on the grain size distribution rule and influence factors of nanocrystalline copper fabricated under explosive loading [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 501-507. (in Chinese)
[14] 王金相, 周楠. 爆炸载荷下纳米晶铜晶粒度分布及影响因素研究 [J]. 高压物理学报, 2011, 25(6): 501-507.
[15] Kang J X, Wang Z H, Zhao L M. Studay on the quasi-static mechanical proerties of cellular metal using voronoi tessellation [J]. Engineering Mechanics, 2011, 28(7): 203-209. (in Chinese)
[16] 康锦霞, 王志华, 赵隆茂. 采用Voronoi模型研究多孔金属材料准静态力学特性 [J]. 工程力学, 2011, 28(7): 203-209.
[17] Zhang Q M, Liu Y, Huang F L. Dynamic Behavior of Materials [M]. Beijing: National Defense Industry Press, 2006: 165-170. (in Chinese)
[18] 张庆明, 刘彦, 黄风雷. 材料的动力学行为 [M]. 北京: 国防工业出版社, 2006: 165-170.
[19] Wang H T, Yang W, Ngan A H W. Enhanced diffusivity by triple junction networks [J]. Scripta Mater, 2004, 52(1): 69-73.
[20] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Eng Fract Mech, 1985, 21(1): 31-48.
[21] Tang W H, Zhang R Q. Introduction to Theory and Computation of Equations of State [M]. 2nd ed. Beijing: Higher Education Press, 2008: 134-136. (in Chinese)
[22] 汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 第2版. 北京: 高等教育出版社, 2008: 134-136.
[23] Andrievski R A. Review stability of nanostructured materials [J]. J Mater Sci, 2003, 38(7): 1367-1375.
[24] Murty B S, Datta M K, Pabi S K. Structure and thermal stability of nanocrystalline materials [J]. Sadhana, 2003, 28(1-2): 23-45.