[1] Ashcroft N W. Metallic hydrogen: A high-temperature superconductor [J]. Phys Rev Lett, 1968, 21(26): 1748-1749.
[2] Zhang L J, Niu Y L, Cui T, et al. The broken-symmetry phase of solid hydrogen: Evidence from infrared and Raman active vibrons [J]. J Phys: Condensed Matter, 2007, 19(42): 425237.
[3] Pickard C J, Needs R J. Structure of phase Ⅲ of solid hydrogen [J]. Nature Physics, 2007, 3(7): 473-476.
[4] Wang Y, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization [J]. Phys Rev B, 2010, 82(9): 094116.
[5] Wang Y, Lv J, Zhu L, et al. CALYPSO: A method for crystal structure prediction [J]. Comput Phys Commun, 2012, 183(10): 2063-2070.
[6] Lv J, Wang Y, Zhu L, et al. Predicted novel high-pressure phases of lithium [J]. Phys Rev Lett, 2011, 106(1): 015503.
[7] Li Q, Zhou D, Zheng W, et al. Global structural optimization of tungsten borides [J]. Phys Rev Lett, 2013, 110(13): 136403.
[8] Wang X, Wang Y, Miao M, et al. Cagelike diamondoid nitrogen at high pressures [J]. Phys Rev Lett, 2012, 109(17): 175502.
[9] Wang Y, Liu H, Lv J, et al. High pressure partially ionic phase of water ice [J]. Nature Communications, 2011, 2(12): 563.
[10] Zhu L, Wang H, Wang Y, et al. Substitutional alloy of Bi and Te at high pressure [J]. Phys Rev Lett, 2011, 106(14): 145501.
[11] Zhu L, Wang Z, Wang Y, et al. Spiral chain O4 form of dense oxygen [J]. PNAS, 2012, 109(3): 751-753.
[12] Li P, Gao G, Wang Y, et al. Crystal structures and exotic behavior of magnesium under pressure [J]. J Phys Chem C, 2010, 114(49): 21745.
[13] Liu H, Wang H, Ma Y. Quasi-molecular and atomic phases of dense solid hydrogen [J]. J Phys Chem C, 2012, 116(16): 9221-9226. 〗
[14] Wang H, John S T, Tanaka K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. PNAS, 2012, 109(17): 6463-6466.
[15] Peng F, Miao M, Wang H, et al. Predicted lithium-boron compounds under high pressure [J]. J Am Chem Soc, 2012, 134(45): 18599-18605.
[16] Zhou D, Li Q, Ma Y, et al. Unraveling convoluted structural transitions in SnTe at high pressure [J]. J Phys Chem C, 2013, 117(10): 5352-5357.
[17] Zhao Z, Tian F, Dong X, et al. Tetragonal allotrope of group 14 elements [J]. J Am Chem Soc, 2012, 134(30): 12362-12365.
[18] Li Q, Liu H, Zhou D, et al. A novel low compressible and superhard carbon nitride: Body-centered tetragonal CN2 [J]. Phys Chem Chem Phys, 2012, 14(37): 13081-13087.
[19] Zhang X, Wang Y, Ma Y. High pressure structures of 111-type iron-based superconductors predicted from first-principles [J]. Phys Chem Chem Phys, 2012, 14(43): 15029-15035.
[20] Luo X, Liu L M, Hu Z, et al. Two-dimensional superlattice: Modulation of band gaps in graphene-based monolayer carbon superlattices [J]. J Phys Chem Lett, 2012, 3(22): 3373-3378.
[21] 〖JP4〗Gao G, Wang H, Zhu L, et al. Pressure-induced formation of noble metal hydrides [J]. J Phys Chem C, 2012, 116(2): 1995-2000.
[22] 〖JP4〗Zhao Z, Xu B, Zhou X F, et al. Novel superhard carbon: C-centered orthorhombic C8 [J]. Phys Rev Lett, 2011, 107(21): 215502.
[23] Zhao Z, Xu B, Wang L M, et al. Three dimensional carbon-nanotube polymers [J]. ACS Nano, 2011, 5(9): 7226-7234.
[24] Gao G, Wang H, Bergara A, et al. Metallic and superconducting gallane under high pressure [J]. Phys Rev B, 2011, 84(6): 064118.
[25] Luo X, Yang J, Liu H, et al. Predicting two-dimensional boron-carbon compounds by the global optimization method [J]. J Am Chem Soc, 2011, 133(40): 16285-16290.
[26] Wang Y, Miao M, Lv J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm [J]. J Chem Phys, 2012, 137(22): 224108.
[27] 〖JP4〗Zhang X, Wang Y, Lv J, et al. First-principles structural design of superhard materials [J]. J Chem Phys, 2013, 138(11): 114101.
[28] Hazen R M, Mao H K, Finger L W, et al. Single-crystal X-ray diffraction of n-H2 at high pressure [J]. Phys Rev B, 1987, 36(7): 3944-3947.
[29] Silvera I F, Wijngaarden R J. New low-temperature phase of molecular deuterium at ultrahigh pressure [J]. Phys Rev Lett, 1981, 47(1): 39-42.
[30] Loubeyre P, LeToullec R, Hausermann D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures [J]. Nature, 1996, 383(6602): 702-704.
[31] Mao H K, Hemley R J. Ultrahigh-pressure transitions in solid hydrogen [J]. Rev Mod Phys, 1994, 66(2): 671-692.
[32] Akahama Y, Kawamura H, Hirao N, et al. Raman scattering and X-ray diffraction experiments for phase Ⅲ of solid hydrogen [J]. J Phys: Conf Ser, 2010, 215(1): 012056.
[33] Akahama Y, Nishimura M, Kawamura H, et al. Evidence from X-ray diffraction of orientational ordering in phase Ⅲ of solid hydrogen at pressures up to 183 GPa [J]. Phys Rev B, 2010, 82(6): 060101.
[34] Lorenzana H E, Silvera I F, Goettel K A. Evidence for a structural phase transition in solid hydrogen at megabar pressures [J]. Phys Rev Lett, 1989, 63(19): 2080-2083.
[35] Mao H K, Hemley R J. Optical studies of hydrogen above 200 gigapascals: Evidence for metallization by band overlap [J]. Science, 1989, 244(19): 1462-1465.
[36] Eggert J H, Moshary F, Evans W J, et al. Absorption and reflectance in hydrogen up to 230 GPa: Implications for metallization [J]. Phys Rev Lett, 1991, 66(2): 193-196.
[37] Hanfland M, Hemley R J, Mao H K. Optical absorption measurements of hydrogen at megabar pressures [J]. Phys Rev B, 1991, 43(10): 8767-8770.
[38] Kitamura H, Tsuneyuki S, Ogitsu T, et al. Quantum distribution of protons in solid molecular hydrogen at megabar pressures [J]. Nature, 2000, 404(6775): 259-262.
[39] Kohanoff J, Scandolo S, Chiarotti G L, et al. Solid molecular hydrogen: The broken symmetry phase [J]. Phys Rev Lett, 1997, 78(14): 2783-2786.
[40] Nagao K, Nagara H. Theoretical study of Raman and infrared active vibrational modes in highly compressed solid hydrogen [J]. Phys Rev Lett, 1998, 80(3): 548-551.
[41] Nagao K, Takezawa T, Nagara H. Ab initio calculation of optical-mode frequencies in compressed solid hydrogen [J]. Phys Rev B, 1999, 59(21): 13741-13753.
[42] Stdele M, Martin R M. Metallization of molecular hydrogen: Predictions from exact-exchange calculations [J]. Phys Rev Lett, 2000, 84(26): 6070-6073.
[43] Cui L, Chen N H, Silvera I F. Excitations, order parameters, and phase diagram of solid deuterium at megabar pressures [J]. Phys Rev B, 1995, 51(21): 14987-14997.
[44] Johnson K A, Ashcroft N W. Structure and bandgap closure in dense hydrogen [J]. Nature, 2000, 403(6770): 632-635.
[45] Cui T, Cheng E, Alder B J, et al. Rotational ordering in solid deuterium and hydrogen: A path integral Monte Carlo study [J]. Phys Rev B, 1997, 55(18): 12253-12266.
[46] Kaxiras E, Guo Z. Orientational order in dense molecular hydrogen: A first-principles path-integral Monte Carlo calculation [J]. Phys Rev B, 1994, 49(17): 11822-11832.
[47] Maksimov E G, Shilov Y I. Hydrogen at high pressure [J]. Physics-Uspekhi, 1999, 42(11): 1121-1138.
[48] Zhang L J, Niu Y L, Cui T, et al. Ab initio lattice dynamics evidence for the broken-symmetry phase of solid hydrogen [J]. J Phys: Condens Mat, 2006, 18(43): 9917.
[49] 〖JP4〗McMahon J M, Ceperley D M. Ground-state structures of atomic metallic hydrogen [J]. Phys Rev Lett, 2011, 106(16): 165302.
[50] Eremets M I, Troyan I A. Conductive dense hydrogen [J]. Nature Mater, 2011, 10(12): 927-931.
[51] Howie R T, Guillaume C L, Scheler T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Phys Rev Lett, 2012, 108(12): 125501.
[52] Martonak R, Laio A, Parrinello M. Predicting crystal structures: The Parrinello-Rahman method revisited [J]. Phys Rev Lett, 2003, 90(7): 075503.
[53] Martonak R, Donadio D, Oganov A R, et al. Crystal structure transformations in SiO2 from classical and ab initio metadynamics [J]. Nature Mater, 2006, 5(8): 623-626.
[54] Liu H, Zhu L, Cui W, et al. Room-temperature structures of solid hydrogen at high pressures [J]. J Chem Phys, 2012, 137(7): 074501.
[55] Liu H, Ma Y. Proton or deuteron transfer in phase Ⅳ of solid hydrogen and deuterium [J]. Phys Rev Lett, 2013, 110(2): 025903.
[56] Tonkov E Y, Ponyatovsky E G. Phase Transformations of Elements under High Pressure [M]. Boca Raton, FL: CRC Press, 2005.
[57] Bini R, Ulivi L, Kreutz J, et al. High-pressure phases of solid nitrogen by Raman and infrared spectroscopy [J]. J Chem Phys, 2000, 112(19): 8522-8529.
[58] Eremets M I, Gavriliuk A G, Serebryanaya N R, et al. Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures [J]. J Chem Phys, 2004, 121(22): 11296.
[59] Mailhiot C, Yang L H, McMahan A K. Polymeric nitrogen [J]. Phys Rev B, 1992, 46(22): 14419.
[60] Martin R M, Needs R J. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures [J]. Phys Rev B, 1986, 34(8): 5082-5092.
[61] Lewis S P, Cohen M L. High-pressure atomic phases of solid nitrogen [J]. Phys Rev B, 1992, 46(17): 11117-11120.
[62] Mattson W D, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations [J]. Phys Rev Lett, 2004, 93(12): 125501.
[63] Yao Y, Tse J S, Tanaka K. Metastable high-pressure single-bonded phases of nitrogen predicted via genetic algorithm [J]. Phys Rev B, 2008, 77(5): 052103.
[64] Ma Y, Oganov A R, Li Z, et al. Novel high pressure structures of polymeric nitrogen [J]. Phys Rev Lett, 2009, 102(6): 065501.
[65] Meier R J, Helmholdt R B. Neutron-diffraction study of alpha- and beta-oxygen [J]. Phys Rev B, 1984, 29(3): 1387.
[66] English C A, Venables J A. The structure of the diatomic molecular solids [J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1974, 340(1620): 57-80.
[67] Horl E M. Structure and structure imperfections of solid-oxygen [J]. Acta Crystallographica, 1962, 15(9): 845-850.
[68] LeSar R, Etters R D. Character of the alpha-beta phase transition in solid oxygen [J]. Phys Rev B, 1988, 37(10): 5364-5370.
[69] Gorelli F A, Santoro M, Ulivi L, et al. Crystal structure of solid oxygen at high pressure and low temperature [J]. Phys Rev B, 2002, 65(17): 172106.
[70] 〖JP4〗Goncharenko I N. Evidence for a magnetic collapse in the epsilon phase of solid oxygen [J]. Phys Rev Lett, 2005, 94(20): 205701.
[71] Neaton J B, Ashcroft N W. Low-energy linear structures in dense oxygen: Implications for the epsilon phase [J]. Phys Rev Lett, 2002, 88(20): 205503.
[72] Serra S, Chiarotti G, Scandolo S, et al. Pressure-induced magnetic collapse and metallization of molecular oxygen: The zeta-O2 phase [J]. Phys Rev Lett, 1998, 80(23): 5160.
[73] Schiferl D, Cromer D T, Mills R L. Structure of O2 at 5. 5 GPa and 299 K [J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1981, 37(7): 1329-1332.
[74] D'Amour H, Holzapfel W B, Nicol M. Solid oxygen near 298 K. The structure of beta-oxygen and identification of a new epsilon phase [J]. J Phys Chem, 1981, 85(2): 130-131.
[75] Schiferl D, Cromer D T, Schwalbe L A, et al. Structure of 'orange' 18O2 at 9. 6 GPa and 297 K [J]. Acta Crystallographica Section B: Structural Science, 1983, 39(2): 153-157.
[76] Fujihisa H, Akahama Y, Kawamura H, et al. O8 cluster structure of the epsilon phase of solid oxygen [J]. Phys Rev Lett, 2006, 97(8): 085503.
[77] Desgreniers S, Vohra Y K, Ruoff A L. Optical response of very high density solid oxygen to 132 GPa [J]. J Phys Chem, 1990, 94(3): 1117-1122.
[78] Akahama Y, Kawamura H, Husermann D, et al. New high-pressure structural transition of oxygen at 96 GPa associated with metallization in a molecular solid [J]. Phys Rev Lett, 1995, 74(23): 4690.
[79] Shimizu K, Suhara K, Ikumo M, et al. Superconductivity in oxygen [J]. Nature, 1998, 393(6687): 767-769.
[80] Goncharov A F, Gregoryanz E, Hemley R J, et al. Molecular character of the metallic high-pressure phase of oxygen [J]. Phys Rev B, 2003, 68(10): 100102.
[81] Weck G, Loubeyre P, LeToullec R. Observation of structural transformations in metal oxygen [J]. Phys Rev Lett, 2002, 88(3): 035504.
[82] Weck G, Desgreniers S, Loubeyre P, et al. Single-crystal structural characterization of the metallic phase of oxygen [J]. Phys Rev Lett, 2009, 102(25): 255503.