[1] Dewaele A, Mezouar M, Guignot N, et al. High melting points of tantalum in a laser heated diamond anvil cell [J]. Phys Rev Lett, 2010, 104(25): 255701.
[2] Santamaria-Perez D, Mukherjee G D, Schwager B, et al. High pressure melting curve of helium and neon: Deviations from corresponding states theory [J]. Phys Rev B, 2010, 81(21): 214101.
[3] Klepeis J P, Cynn H, Evans W J, et al. Diamond anvil cell measurement of high pressure yield strength of vanadium using in situ thickness determination [J]. Phys Rev B, 2010, 81(13): 134107.
[4] Dorogokupets P I, Dewaele A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales [J]. High Pressure Res, 2007, 27(4): 431-446.
[5] Ueda Y, Matsui M, Yokoyama A, et al. Temperature-pressure-volume equation of state of the B2 phase of sodium chloride [J]. J Appl Phys, 2008, 103(11): 113513.
[6] Bassett W A. Diamond anvil cell: 50th birthday [J]. High Pressure Res, 2009, 29(2): 163-186.
[7] Forman R A, Piermarini G J, Barnett J D, et al. Pressure measurement made by the utilization of ruby sharp line luminescence [J]. Science, 1972, 176(4032): 284-285.
[8] Piermarini G J, Block S, Barnett J D, et al. Calibration of the pressure dependence of the R1 ruby fluorescence line to 195kbar [J]. J Appl Phys, 1975, 46(6): 2774-2780.
[9] Decker D L. High pressure equation of state for NaCl, KCl, and CsCl [J]. J Appl Phys, 1971, 42(8): 3239-3244.
[10] Mao H K, Bell P M, Shaner J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0. 06 to 1 Mbar [J]. J Appl Phys, 1978, 49(6): 3276-3283.
[11] Carter W J, Marsh S P, Fritz J N, et al. The equation of state of selected materials for high pressure reference [J]. Nat Bur Stand (US) Spec Publ, 1971, 326: 147-158.
[12] Mao H K, Xu J, Bell P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. J Geophys Res, 1986, 91(B5): 4673-4676.
[13] Zha C S, Mao H K, Hemley R J. Elasticity of MgO and a primary pressure scale to 55 GPa [J]. PNAS, 2000, 97(25): 13494-13499.
[14] Kunc K, Loa I, Syassen K. Diamond under pressure: Ab initio calculations of the equation of state and optical frequency revisited [J]. High Pressure Res, 2004, 24(1): 101-110.
[15] Aleksandrov I V, Goncharov A F, Zisman A N, et al. Diamond at high pressure: Raman scattering of light, equation of state, and high pressure scale [J]. Zh Eksp Teor Fiz, 1987, 93(2): 680-691.
[16] Holzapfel W B. Refinement of the ruby luminescence pressure scale [J]. J Appl Phys, 2003, 93(3): 1813-1818.
[17] Dorogokupets P I, Oganov A R. Equation of state of Cu and Ag and revised ruby pressure scale [J]. Dokl Earth Sci, 2003, 391A(6): 854-857.
[18] Kunc K, Loa I, Syassen K. Equation of state and phonon frequency calculations of diamond at high pressures [J]. Phys Rev B, 2003, 68(9): 094107.
[19] Dewaele A, Loubeyre P, Mezouar M. Equation of state of six metals above 94 GPa [J]. Phys Rev B, 2004, 70(9): 094112.
[20] Chijioke A D, Nellis W J, Soldatov A, et al. The ruby pressure standard to 150 GPa [J]. J Appl Phys, 2005, 98(11): 114905.
[21] Silvera I F, Chijioke A D, Nellis W J, et al. Calibration of the ruby pressure scale to 150 GPa [J]. Phys Status Solidi B, 2007, 244(1): 460-467.
[22] Dorogokupets P I, Oganov A R. Ruby, Metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures [J]. Phys Rev B, 2007, 75(2): 024115.
[23] Dewaele A, Torrent M, Loubeyre P, et al. Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations [J]. Phys Rev B, 2008, 78(10): 104102.
[24] Kennedy G, Keeler R. American Institute of Physics Handbook [M]. New York: McGraw-Hill, 1972.
[25] Hixson R S, Fritz J N. Shock compression of tungsten and molybdenum [J]. J Appl Phys, 1992, 71(4): 1721-1726.
[26] Marsh S P. Los Alamos Shock Hugoniot Data [M]. Berkeley: University of California Press, 1980.
[27] McQueen R G, Marsh S P. Equation of state for nineteen metallic elements from shock wave measurements to two megabars [J]. J Appl Phys, 1960, 31(7): 1253-1269.
[28] Steinle-Neumann G, Stixrude L, Cohen R E. Absence of lattice strain anomalies at the electronic topological in zinc at high pressure [J]. Phys Rev B, 2001, 63(5): 054103.
[29] Wang Y, Ahuja R, Johansson B. Reduction of shock-wave data with mean-field potential approach [J]. J Appl Phys, 2002, 92(11): 6616-6620.
[30] Nellis W J, Moriarty J A, Mitchell A C, et al. Metals physics at ultrahigh pressures: Aluminum, copper, and lead as prototypes [J]. Phys Rev Lett, 1988, 60(14): 1414-1417.
[31] Jin K, Wu Q, Jing F Q, et al. Simple method for reducing shock wave equation of state to zero kelvin isotherm for metals [J]. J Appl Phys, 2009, 105(4): 043510.
[32] Jin K, Li X Z, Wu Q, et al. The pressure-volume-temperature equation of state of MgO derived from shock Hugoniot data and its application as a pressure scale [J]. J Appl Phys, 2010, 107(11): 113518.
[33] Jin K, Wu Q, Geng H Y, et al. Pressure-volume-temperature equations of state of Au and Pt up to 300 GPa and 3000 K: Internally consistent pressure scales [J]. High Pressure Res, 2011, 31(4): 560-580.
[34] Guinan M W, Steinberg D J. Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements [J]. J Phys Chem Solids, 1974, 35(11): 1501-1512.
[35] Xu X S, Zhang W X. Introduction to Theoretical Equation of State [M]. Beijing: Science Press, 1986: 517-520. (in Chinese)
[36] 徐锡申, 张万箱. 实用物态方程理论导引 [M]. 北京: 科学出版社, 1986: 517-520.
[37] Wang X. Study on experimental techniques for precise measurements of equation of state in metallic materials [D]. Mianyang: China Academy of Engineering Physics, 2004: 89-90. (in Chinese).
[38] 王翔. 金属材料状态方程精确实验测量技术研究 [D]. 绵阳: 中国工程物理研究院, 2004: 89-90.
[39] Michell A C, Nellis W J. Shock compression of aluminum, copper, and tantalum [J]. J Appl Phys, 1981, 52(5): 3363-3374.
[40] Walsh J M, Rice M H, McQueen R G. Shock wave compressions of twenty-seven metals: Equations of state of metals [J]. Phys Rev, 1957, 108(2): 196-216.
[41] Holzapfel W B, Hartwig M, Sievers W. Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above [J]. J Phys Chem Ref Data, 2001, 30(2): 515-529.
[42] Daniels W B, Smith C S. Pressure derivatives of the elastic constants of copper, silver, and gold to 10000 bar [J]. Phys Rev, 1958, 111(3): 713-721.
[43] Golding B, Moss S C, Averbach B L. Composition and pressure dependence of the elastic constants of Gold-Nickel alloys [J]. Phys Rev, 1967, 158(3): 637-646.
[44] Biswas S N, van't Klooster P, Trappeniers N J. Effect of pressure on the elastic constants of noble metals from -196 to +25 ℃ and up to 2500 barⅡ. Silver and gold [J]. Physica B, 1981, 103(2-3): 235-246.
[45] Heinz D L, Jeanloz R. The equation of state of the gold calibration standard [J]. J Appl Phys, 1984, 55(4): 885-893.
[46] Akahama Y, Kawamura H, Singh A K. Equation of state of bismuth to 222 GPa and comparison of gold and platinum pressure scales to 145 GPa [J]. J Appl Phys, 2002, 92(10): 5892-5897.
[47] Shim S, Duffy T S, Kenichi K. Equation of state of gold and its application to the phase boundaries near 660km depth in Earth's mantle [J]. Earth Planet Sci Lett, 2002, 203(2): 729-739.
[48] Fei Y, Ricolleau A, Frank M, et al. Toward an internally consistent pressure scale [J]. PNAS, 2007, 104(22): 9182-9186.
[49] Takemura K. Pressure scales and hydrostaticity [J]. High Pressure Res, 2007, 27(4): 465-472.
[50] Takemura K, Dewaele A. Isothermal equation of state for gold with a He pressure medium [J]. Phys Rev B, 2008, 78(10): 104119.
[51] Hirose K, Sata N, Komabayashi T, et al. Simultaneous volume measurements of Au and MgO to 140 GPa and thermal equation of state of Au on the MgO pressure scale [J]. Phys Earth Planet Inter, 2008, 167(3-4): 149-154.
[52] Yokoo M, Kawai N, Nakamura K G, et al. Hugoniot measurement of gold at high pressure of up to 580 GPa [J]. Appl Phys Lett, 2008, 92(5): 051901.
[53] Vinet P, Smith J R, Ferrante J, et al. Temperature effects on the universal equation of state of solids [J]. Phys Rev B, 1987, 35(4): 1945-1953.
[54] Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K [J]. J Geophys Res, 1978, 83(B3): 1257-1268.