[1] OUELLET S, CRONIN D, WORSWICK M. Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions [J]. Polymer Testing, 2006, 25(6): 731–743. doi: 10.1016/j.polymertesting.2006.05.005
[2] CRONIN D S, OUELLET S. Low density polyethylene, expanded polystyrene and expanded polypropylene: strain rate and size effects on mechanical properties [J]. Polymer Testing, 2016, 53: 40–50. doi: 10.1016/j.polymertesting.2016.04.018
[3] HORVATH J S. Expanded polystyrene (EPS) geofoam: an introduction to material behavior [J]. Geotextiles and Geomembranes, 1994, 13(4): 263–280. doi: 10.1016/0266-1144(94)90048-5
[4] GIBSON L, ASHBY M. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997.
[5] SAINT-MICHEL F, CHAZEAU L, CAVAILLÉ J Y, et al. Mechanical properties of high density polyurethane foams: I. effect of the density [J]. Composites Science and Technology, 2006, 66(15): 2700–2708. doi: 10.1016/j.compscitech.2006.03.009
[6] CHEN W, HAO H, HUGHES D, et al. Static and dynamic mechanical properties of expanded polystyrene [J]. Materials & Design, 2015, 69: 170–180.
[7] 王志亮, 诸斌. EPS泡沫冲击压缩和吸能特性试验研究 [J]. 建筑材料学报, 2013, 16(4): 630–636 doi: 10.3969/j.issn.1007-9629.2013.04.014

WANG Z L, ZHU B. Experimental study on impact compression and energy-absorbing property of expanded polystyrene foam [J]. Journal of Building Materials, 2013, 16(4): 630–636 doi: 10.3969/j.issn.1007-9629.2013.04.014
[8] LING C, IVENS J, CARDIFF P, et al. Deformation response of EPS foam under combined compression-shear loading. Part I: experimental design and quasi-static tests [J]. International Journal of Mechanical Sciences, 2018, 144: 480–489. doi: 10.1016/j.ijmecsci.2018.06.014
[9] LING C, IVENS J, CARDIFF P, et al. Deformation response of EPS foam under combined compression-shear loading. Part II: high strain rate dynamic tests [J]. International Journal of Mechanical Sciences, 2018, 145: 9–23. doi: 10.1016/j.ijmecsci.2018.06.015
[10] LING C, CARDIFF P, GILCHRIST M D. Mechanical behaviour of EPS foam under combined compression-shear loading [J]. Materials Today Communications, 2018, 16: 339–352. doi: 10.1016/j.mtcomm.2018.07.001
[11] SHAH Q H, TOPA A. Modeling large deformation and failure of expanded polystyrene crushable foam using LS-DYNA [J]. Modelling and Simulation in Engineering, 2014: 1.
[12] OZTURK U E, ANLAS G. Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading [J]. Materials & Design, 2011, 32(2): 773–780.
[13] 姚小虎, 任会兰, 林荣, 等. 聚合物泡沫材料动态力学性能及其能量吸收研究 [J]. 高压物理学报, 2012, 26(5): 531–536

YAO X H, REN H L, LIN R, et al. Study on dynamic mechanical properties and energy absorption of polymeric foams [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 531–536
[14] 郭伟国, 李玉龙, 索涛. 应力波基础简明教程 [M]. 西安: 西北工业大学出版社, 2007: 120–154.
[15] NAGY A, KO W L, LINDHOLM U S. Mechanical behavior of foamed materials under dynamic compression [J]. Journal of Cellular Plastics, 1974, 10(3): 127–134. doi: 10.1177/0021955X7401000306
[16] ZHANG J, KIKUCHI N, LI V, et al. Constitutive modeling of polymeric foam material subjected to dynamic crash loading [J]. International Journal of Impact Engineering, 1998, 21(5): 369–386. doi: 10.1016/S0734-743X(97)00087-0
[17] ABAQUS analysis user’s manual version 2017 [M]. ABAQUS Inc., 2017.
[18] OZTURK U E. Mechanical behavior of low density polymeric foams under multiple loading and unloading [D]. Turkey: Bogazici University, 2008.
[19] LS-DYNA theory manual version Vol. R7.1 [M]. Livermore: Livermore Software Technology, 2006.