[1] ZHANG Q C, YANG X H, LI P, et al. Bioinspired engineering of honeycomb structure—using nature to inspire human innovation [J]. Progress in Materials Science, 2015, 74: 332–400. doi: 10.1016/j.pmatsci.2015.05.001
[2] BITZER T. Honeycomb technology: materials, design, manufacturing, applications and testing [M]. New York: Springer Science & Business Media, 1997.
[3] GRIMA J N, OLIVERI L, ATTARD D, et al. Hexagonal honeycombs with zero poisson’s ratios and enhanced stiffness [J]. Advanced Engineering Materials, 2010, 12(9): 855–862. doi: 10.1002/adem.201000140
[4] NEVILLE R M, MONTI A, HAZRA K, et al. Transverse stiffness and strength of Kirigami zero-v peek honeycombs [J]. Composite Structures, 2014, 114(1): 30–40.
[5] 程文杰, 周丽, 张平, 等. 零泊松比十字形混合蜂窝设计分析及其在柔性蒙皮中的应用 [J]. 航空学报, 2015, 36(2): 680–690.

CHENG W J, ZHOU L, ZHANG P, et al. Design and analysis of a zero poisson’s ratio mixed cruciform honeycomb and its application in flexible skin [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 680–690.
[6] HUANG J, GONG X B, ZHANG Q H, et al. In-plane mechanics of a novel zero poisson’s ratio honeycomb core [J]. Composites Part B: Engineering, 2016, 89: 67–76. doi: 10.1016/j.compositesb.2015.11.032
[7] PAPKA S D, KYRIAKIDES S. In-plane compressive response and crushing of honeycomb [J]. Journal of the Mechanics & Physics of Solids, 1994, 42(10): 1499–1532.
[8] HU L L, YU T X. Dynamic crushing strength of hexagonal honeycombs [J]. International Journal of Impact Engineering, 2010, 37(5): 467–474. doi: 10.1016/j.ijimpeng.2009.12.001
[9] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs—a finite element study [J]. International Journal of Impact Engineering, 2003, 28(2): 161–182. doi: 10.1016/S0734-743X(02)00056-8
[10] HU L L, YOU F F, YU T X. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs [J]. Materials & Design, 2013, 46(4): 511–523.
[11] HU L L, YU T X. Mechanical behavior of hexagonal honeycombs under low-velocity impact—theory and simulations [J]. International Journal of Solids and Structures, 2013, 50(20/21): 3152–3165. doi: 10.1016/j.ijsolstr.2013.05.017
[12] HONG S T, PAN J, TYAN T, et al. Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads [J]. International Journal of Plasticity, 2008, 24(1): 89–117. doi: 10.1016/j.ijplas.2007.02.003
[13] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view: a structural review on the negative poisson’s ratio [J]. Computational Materials Science, 2012, 58: 140–153. doi: 10.1016/j.commatsci.2012.02.012
[14] 卢子兴, 王欢, 杨振宇, 等. 星型-箭头蜂窝结构的面内动态压溃行为 [J]. 复合材料学报, 2019, 36(8): 1893–1900.

LU Z X, WANG H, YANG Z Y, et al. In-plane dynamic crushing of star-arrowhead honeycomb structure [J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1893–1900.
[15] 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能 [J]. 爆炸与冲击, 2012, 32(5): 475–482. doi: 10.3969/j.issn.1001-1455.2012.05.005

ZHANG X C, LIU Y, LI N. In-plane dynamic crushing of honeycombs with negative poisson’s ratio effects [J]. Explosion and Shock Waves, 2012, 32(5): 475–482. doi: 10.3969/j.issn.1001-1455.2012.05.005
[16] LIU W Y, WANG N L, GUO T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure [J]. Materials & Design, 2016, 100: 84–91.
[17] HOU X H, DENG Z C, ZHANG K. Dynamic crushing strength analysis of auxetic honeycombs [J]. Acta Mechanica Solida Sinica, 2016, 29(5): 490–501. doi: 10.1016/S0894-9166(16)30267-1
[18] CHEN Y, FU M H. Mechanical properties of a novel zero poisson’s ratio honeycomb [J]. Advanced Engineering Materials, 2018, 20(2): 1700452.
[19] REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5/6): 531–570. doi: 10.1016/S0734-743X(97)00016-X
[20] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997.