[1] Morris D G. Mechanical Behavior of Nanostructured Materials [M]. Geneva: Trans Tech Pub Inc, 1998.
[2] Wang H T, Yang W. Mechanical Behavior of Nanocrystalline Metals [J]. Adv Mech, 2004, 34(3): 314-326. (in Chinese)
[3] 王宏涛, 杨卫. 纳米金属的力学行为 [J]. 力学进展, 2004, 34(3): 314-326.
[4] Sanders P G, Eastman J A, Weertman J R, et al. Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium [J]. Acta Mater, 1997, 45(10): 4019-4025.
[5] Lu L, Li S X, Lu K, et al. An Abnormal Strain Rate Effect on Tensile Behavior in Nanocrystalline Copper [J]. Scripta Mater, 2001, 45(10): 1163-1169.
[6] Zhang L D, Mou J M. Nano-Materials and Nano-Structure [M]. Beijing: Science Press, 2001. (in Chinese)
[7] 张立德, 牟季美. 纳米材料和纳米结构 [M]. 北京: 科学出版社, 2001.
[8] Benkassem S, Capolungo L, Cherkaoui M. Mechanical Proerties and Multi-Scale Modeling of Nanocrystalline Materials [J]. Acta Mater, 2007, 55(10): 3563-3572.
[9] Lichtenberger A, Bohmann A. Influence of Structure and Metallurgical State of a Liner on the Performance of a Shaped Charge [A]//Proceeding of the 6th International Symposium on Ballistics [C]. Orlando, 1981.
[10] Li A M, Zhang X Y, Zhao X C, et al. Progress in Preparation Technology and Mechanical Properties of Nanocrystalline Bulk Metals [J]. Materials Review, 2007, 21(4): 111-116. (in Chinese)
[11] 李安敏, 张喜燕, 赵新春. 纳米晶金属块体材料制备技术与力学性能研究进展 [J]. 材料导报, 2007, 21(4): 111-116.
[12] Gleiter H. Nanostructured Materials: State of the Art and Perspectives [J]. Nanostructured Materials, 1995, 16: 3-14.
[13] Valiev R Z, Alexandrov I V. Bulk Nanostructured Materials by Severe Plastic Deformation [M]. Lin B N, Translated by Lin B N. Beijing: Science Press, 2006. (in Chinese)
[14] Valiev R Z, Alexandrov I V. 剧烈塑性形变纳米材料 [M]. 林柏年, 译. 北京: 科学出版社, 2006.
[15] Champion Y, Langlois C, Gurin S, et al. Analysis of Ductility of Nanostructured Copper Prepared by Powder Metallurgy [J]. Eng Fract Mech, 2008, 75(12): 3624-3632.
[16] Jankowski A F, Saw C K, Harper J F, et al. Nanocrystalline Growth and Grain-Size Effects in Au-Cu Electrodeposits [J]. Thin Solid Films, 2006, 494(1-2): 268-273.
[17] Chen F, Yang L M, Zhang M H. Producing Nano-Structured Copper Specimens under the High Strain Rate Load and Severe Plastic Deformation [J]. Journal of Ningbo University (Natural Science Engineering Edition), 2006, 19(4): 481-485. (in Chinese)
[18] 陈锋, 杨黎明, 张明华. 用高应变率大应变载荷制备纳米晶铜试件 [J]. 宁波大学学报(理工版), 2006, 9(4): 481-485.
[19] Deng X L, Zhu W J, He H L, et al. Plasticity Mechanism Associated with Nano-Void Growth under Impact Loading along 〈111〉 Direction in Copper [J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 59-65. (in Chinese)
[20] 邓小良, 祝文军, 贺红亮, 等. 沿〈111〉晶向冲击加载下铜中纳米孔洞增长的塑性机制研究 [J]. 高压物理学报, 2007, 21(1): 59-65.
[21] Johnson G R, Cook W H. Fracture Characteristics of Three Metals Subjected to Various Strain Rates, Temperatures and Pressures [J]. Eng Frac Mech, 1985, 21(1): 31-48.
[22] Editorial Group of Explosion and Its Effect by the Eighth Department of Beijing Institute of Technology. Explosion and Its Effect [M]. Beijing: National Defense Industry Press, 1979: 274-280. (in Chinese)
[23] 北京工业学院八系《爆炸及其作用》编写组. 爆炸及其作用 [M]. 北京: 国防工业出版社, 1979: 274-280.
[24] Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strain, High Strain Rates and High Temperatures [A]//Proceedings of the Seventh International Symposium on Ballistic [C]. The Netherlands: The Hague, 1983: 541-547.
[25] Zhang B, Shim V P W. Determination of Inelastic Heat Fraction of OFHC Copper through Dynamic Compression [J]. Int J Impact Eng, 2010, 37(1): 50-68.
[26] Cooper S R, Benson D J, Nesterenko V F. A Numerical Exploration of the Role of Void Geometry on Void Collapse and Hot Spot Formation in Ductile Materials [J]. Int J Plasticity, 2000, 16: 525-540.