[1] Mader C L. Numerical Modeling of Detonation [M]. Berkeley, USA: University of California Press, 1979.
[2] Lee E L, Tarver C M. Phenomenological Model of Shock Initiation in Heterogeneous Explosives [J]. Phys Fluids, 1980, 23(12): 2362-2372.
[3] Tarver C M, Hallquist J O. Modeling Two-Dimensional Shock Initiation and Detonation Wave Phenomena in PBX-9404 and LX-17 [A]//Short J M. Proceedings of the 7th Symposium (International) on Detonation [C]. Annapolis, MD, 1981: 488-497.
[4] Tarver C M, Hallquist J O, Erickson L M. Modeling Short Pulse Duration Shock Initiation of Solid Explosives [A]//Proceedings of the 8th Symposium (International) on Detonation [C]. Albuquerque, NM, 1985: 951-961.
[5] Johnson J N, Tang P K, Forest C A. Shock-Wave Initiation of Heterogeneous Reactive Solids [J]. J Appl Phys, 1985, 57(9): 4323-4334.
[6] Tang P K, Johnson J N, Forest C A. Modeling Heterogeneous High Explosive Burn with an Explicit Hot-spot Process [A]//Proceedings of the 8th Symposium (International) on Detonation [C]. Albuquerque, NM, 1985: 52-61.
[7] Field J E. Hot Spot Ignition Mechanisms for Explosives [J]. Accounts Chem Res, 1992, 25: 489-496.
[8] Kim K, Sohn C H. Modeling of Reaction Bulidup Processes in Shocked Porous Explosives [A]//Proceedings of the 8th Symposium (International) on Detonation [C]. Albuquerque, NM, 1985: 926-933.
[9] Kim K. Development of a Model of Reaction Rates in Shocked Multicomponent Explosives [A]//Proceedings of the 9th Symposium (International) on Detonation [C]. Portland, OR, 1989: 593-603.
[10] Wen L J, Duan Z P, Zhang Z Y, et al. A Pore Collapse Model of Double Hollow Sphere with Rigid-Plastic Binders for Hot-Spot Ignition in Shocked Explosives [J]. Transactions of Beijing Institute of Technology, 2011, 31(8): 883-887. (in Chinese)
[11] 温丽晶, 段卓平, 张震宇, 等. 刚塑性粘结剂的双球壳塌缩热点反应模型 [J]. 北京理工大学学报, 2011, 31(8): 883-887.
[12] Zhang Z Y, Lu F Y, Wang Z B, et al. Studies on High-Pressure Reaction Rate of PBX-9404 [J]. Explosion and Shock Waves, 1999, 19(4): 360-364. (in Chinese)
[13] 张震宇, 卢芳云, 王志兵, 等. PBX-9404炸药高压反应速率方程的研究 [J]. 爆炸与冲击, 1999, 19(4): 360-364.
[14] Perzyna P. Fundamental Problems in Viscoplasticity [J]. Adv Appl Mech, 1966, 9: 350-352.
[15] Liang Z Y, Huang F L, Zhang Z Y. Numerical Simulation of Damaged Explosive in Shock Detonation [J]. Transactions of Beijing Institute of Technology, 2006, 26(12): 1047-1051. (in Chinese)
[16] 梁增友, 黄风雷, 张震宇. 损伤炸药的冲击起爆数值模拟 [J]. 北京理工大学学报, 2006, 26(12): 1047-1051.
[17] Tian Z D, Zhang Z Y. A Mesomechanic Model of Shock Initiation in PBX-9404 Explosives [J]. Chinese Journal of Energetic Materials, 2007, 15(5): 464-467. (in Chinese)
[18] 田占东, 张震宇. PBX-9404炸药冲击起爆细观反应速率模型 [J]. 含能材料, 2007, 15(5): 464-467.
[19] Liang Z Y, Huang F L, Zhang Z Y. Study on New Reaction Rate Function Model of PBX-9404 for Damaged Explosive Initiation Behavior [J]. Explosion and Shock Waves, 2008, 28(1): 38-43. (in Chinese)
[20] 梁增友, 黄风雷, 张震宇. PBX-9404的化学反应速率方程及起爆特性 [J]. 爆炸与冲击, 2008, 28(1): 38-43.
[21] Tarver C M, Forbes J W, Garcia F, et al. Manganin Gauge and Reactive Flow Modeling Study of the Shock Initiation of PBX 9501 [A]//Furnish M D, Thadhani N N, Horie Y. Shock Compression of Condensed Matter-2001 [C]. New York: AIP Conference Proceedings, 2002:1043-1046.