[1] WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
[2] ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21: 1748–1749. doi: 10.1103/PhysRevLett.21.1748
[3] BARBEE T W III, GARIA A, COHEN M. First-principles prediction of high-temperature superconductivity in metallic hydrogen [J]. Nature, 1989, 340: 369–371. doi: 10.1038/340369a0
[4] CUDAZZO P, PROFETA G, SANNA A, et al. Ab initio description of high-temperature superconductivity in dense molecular hydrogen [J]. Physical Review Letters, 2008, 100(25): 257001. doi: 10.1103/PhysRevLett.100.257001
[5] HUESTIS D L. Hydrogen collisions in planetary atmospheres, ionospheres, and magnetospheres [J]. Planetary and Space Science, 2008, 56(13): 1733–1743. doi: 10.1016/j.pss.2008.07.012
[6] NELLIS W J. Unusual magnetic fields of uranus and neptune: metallic fluid hydrogen [J]. Modern Physics Letters B, 2015, 29(1): 1430018. doi: 10.1142/S021798491430018X
[7] ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
[8] MOHTADI R, ORIMO S. The renaissance of hydrides as energy materials [J]. Nature Reviews Materials, 2017, 2(3): 16091. doi: 10.1038/natrevmats.2016.91
[9] VOS W L, FINGER L W, HEMLEY R J, et al. Novel H2-H2O clathrates at high pressures [J]. Physical Review Letters, 1993, 71(19): 3150. doi: 10.1103/PhysRevLett.71.3150
[10] VOS W L, FINGER L W, HEMLEY R J, et al. Pressure dependence of hydrogen bonding in a novel H2O-H2 clathrate [J]. Chemical Physics Letters, 1996, 257: 524–530. doi: 10.1016/0009-2614(96)00583-0
[11] MAO W L, MAO H K, GONCHAROV A F, et al. Hydrogen clusters in clathrate hydrate [J]. Science, 2002, 297: 2247–2249. doi: 10.1126/science.1075394
[12] PATCHKOVSKII S, JOHN S T. Thermodynamic stability of hydrogen clathrates [J]. Proceedings of the National Academy of Sciences, 2003, 100(25): 14645–14650. doi: 10.1073/pnas.2430913100
[13] MAO W L, MAO H K. Hydrogen storage in molecular compounds [J]. Proceedings of the National Academy of Sciences, 2004, 101(3): 708–710. doi: 10.1073/pnas.0307449100
[14] LOKSHIN K A, ZHAO Y S, HE D W, et al. Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction [J]. Physical Review Letters, 2004, 93(12): 125503. doi: 10.1103/PhysRevLett.93.125503
[15] MACHIDA S, HIRAI H, KAWAMURA T, et al. Structural changes of filled ice Ic structure for hydrogen hydrate under high pressure [J]. The Journal of Chemical Physics, 2008, 129(22): 224505. doi: 10.1063/1.3013440
[16] MACHIDA S, HIRAI H, KAWAMURA T, et al. Structural changes and intermolecular interactions of filled ice Ic structure for hydrogen hydrate under high pressure [J]. Journal of Physics: Conference Series, 2010, 215: 012060. doi: 10.1088/1742-6596/215/1/012060
[17] STROBEL T A, HESTER K C, KOH C A, et al. Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage [J]. Chemical Physics Letters, 2009, 478: 97–109. doi: 10.1016/j.cplett.2009.07.030
[18] MACHIDA S, HIRAI H, KAWAMURA T, et al. Raman spectra for hydrogen hydrate under high pressure: intermolecular interactions in filled ice Ic structure [J]. Journal of Physics and Chemistry of Solids, 2010, 71: 1324–1328. doi: 10.1016/j.jpcs.2010.05.015
[19] MACHIDA S, HIRAI H, KAWAMURA T, et al. Isotopic effect and amorphization of deuterated hydrogen hydrate under high pressure [J]. Physical Review B, 2011, 83: 144101. doi: 10.1103/PhysRevB.83.144101
[20] STROBEL T A, SOMAYAZULU M, HEMLEY R J. Phase behavior of H2+H2O at high pressures and low temperatures [J]. The Journal of Physical Chemistry C, 2011, 115: 4898–4903. doi: 10.1021/jp1122536
[21] BORSTAD G M, YOO C S. H2O and D2 mixtures under pressure: spectroscopy and proton exchange kinetics [J]. The Journal of Chemical Physics, 2011, 135(17): 174508. doi: 10.1063/1.3658485
[22] EFIMCHENKOA V S, KUZOVNIKOVA M A, FEDOTOVA V K, et al. New phase in the water-hydrogen system [J]. Journal of Alloys and Compounds, 2011, 509(Suppl 2): S860–S863.
[23] ZHANG J Y, KUO J L, IITAKA T. First principles molecular dynamics study of filled ice hydrogen hydrate [J]. The Journal of Chemical Physics, 2012, 137(8): 084505. doi: 10.1063/1.4746776
[24] HIRAI H, KAGAWA S, TANAKA T, et al. Structural changes of filled ice Ic hydrogen hydrate under low temperatures and high pressures from 5 to 50 GPa [J]. The Journal of Chemical Physics, 2012, 137(7): 074505. doi: 10.1063/1.4746017
[25] QIAN G R, LYAKHOV A O, ZHU Q, et al. Novel hydrogen hydrate structures under pressure [J]. Scientific Reports, 2014, 4: 5606.
[26] SAUNDERS S R J, MONTEIRO M, RIZZO F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: a review [J]. Progress in Materials Science, 2008, 53(5): 775–837. doi: 10.1016/j.pmatsci.2007.11.001
[27] MOSHARY F, CHEN N H, SILVERA I F. Pressure dependence of the vibron in H2, HD, and D2: implications for inter-and intramolecular forces [J]. Physical Review B, 1993, 48(17): 12613–12619. doi: 10.1103/PhysRevB.48.12613
[28] DUAN D, LIU Y, TIAN F, et al. Pressure-induced metallization of dense (H2S)2 H2 with high-Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968.
[29] GONCHAROV A F, LOBANOV S S, PRAKAPENKA V B, et al. Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur [J]. Physical Review B, 2017, 95(14): 140101. doi: 10.1103/PhysRevB.95.140101
[30] CHEN J, GONCHAROV A F, SHUKLA V, et al. Stability of Ar (H2)2 to 358 GPa [J]. Proceedings of the National Academy of Sciences, 2017, 114(14): 3596–3600. doi: 10.1073/pnas.1700049114
[31] GONCHAROV A F, STRUZHKIN V V, MAO H K, et al. Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds [J]. Physical Review Letters, 1999, 83(10): 1998–2001. doi: 10.1103/PhysRevLett.83.1998
[32] PRUZAN P, WOLANIN E, GAUTHIER M, et al. Raman scattering and X-ray diffraction of ice in the megabar range: occurrence of a symmetric disordered solid above 62 GPa [J]. The Journal of Physical Chemistry B, 1997, 101(32): 6230–6233. doi: 10.1021/jp963182l