[1] Jing F Q. Introduction to Experimental Equation of State [M]. 2nd ed. Beijing: Science Press, 1999: 5. (in Chinese)
[2] 经福谦. 实验物态方程导引 [M]. 第2版. 北京: 科学出版社, 1999: 5.
[3] Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1980, 52: 3363-3374.
[4] Marsh S P. LASL Shock Hugoniot Data [Z]. Los Angeles: University of California Press, 1980.
[5] Colvin J D, Reed B W, Jankowski A F, et al. Microstructure Morphology of Shock-Induced Melt and Rapid Resolidification in Bismuth [J]. J Appl Phys, 2007, 101: 084906(1)-084906(10).
[6] Li J, Zhou X M, Wang X, et al. A Combined Measurement with Pyrometer and VIASR [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 203-207. (in Chinese)
[7] 李俊, 周显明, 王翔, 等. 多通道辐射高温计与VISAR的联合诊断技术 [J]. 高压物理学报, 2008, 22(2): 203-207.
[8] Asay J R. Shock-Induced Melting in Bismuth [J]. J Appl Phys, 1974, 45: 4441-4452.
[9] Kanel G I, Razorenov S V, Bogatch A, et al. Spall Fracture Properties of Aluminum and Magnesium at High Temperatures [J]. J Appl Phys, 1996, 79: 8310-8317.
[10] Davis J P, Hayes D B. Isentropic Compression Experiments on Dynamic Solidification in Tin [A]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003 [C]. New York: Elsevier Science Publishers, 2004: 163-166.
[11] Rigden S M, Ahrens T J, Stolper E M. Shock Compression of Molten Silicate: Results for a Model Basaltic Compression [J]. J Geophys Res, 1988, 93: 367-382.
[12] Miller G H, Ahrens T J, Stolper E M. The Equation of State of Molybdenum at 1400 ℃ [J]. J Appl Phys, 1988, 63: 4469-4475.
[13] Duffy T S, Ahrens T J. Free Surface Velocity Profiles in Molybdenum Shock Compressed at 1400 ℃ [A]//Schmidt S C, Shaner J W, Semara G A, et al. High-Pressure Science and Technology [C]. New York: Plenum Press, 1993: 1079-1082.
[14] Duffy T S, Ahrens T J. Dynamic Response of Molybdenum Shock Compressed at 1400 ℃ [J]. J Appl Phys, 1994, 76: 835-842.
[15] Gu Z W, Jin X G, Zhang Q F, et al. A Set of Experimental Device of Preheating Materials under Shock Compression and Shock Response of Stainless Steel with High Temperature [J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 190-197. (in Chinese)
[16] 谷卓伟, 金孝刚, 张清福, 等. 材料预加热冲击压缩实验技术及高温下不锈钢的动态响应 [J]. 高压物理学报, 1998, 12(3): 190-197.
[17] Li J, Zhou X M, Li J B, et al. A Shock-Induced Phase Transformation in a LiTaO3 Crystal [J]. J Appl Phys, 2007, 102: 083503.
[18] Dai C D, Tan H, Hu J B, et al. Hugoniot Evaluation of the Preheated Metal from Its Principal Hugoniot [J]. J Appl Phys, 2006, 99: 056102.
[19] Tan H. Introduction to Experimental Shock-Wave Physics [M]. Beijing: National Defense Industry Press, 2007: 137. (in Chinese)
[20] 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007: 137.
[21] Tan H, Dai C D, Zhang L Y, et al. Method to Determine the Melting Temperatures of Metals under Megabar Shock Pressures [J]. Appl Phys Lett, 2005, 87: 221905.
[22] Partouche-Sebban D, Pelissier J L, Abeyta F G, et al. Measurement of the Shock-Heated Melt Curve of Lead Using Pyrometry and Reflectometry [J]. J Appl Phys, 2005, 97: 043521.
[23] Dai C D, Hu J B, Tan H. Hugoniot Temperature and Melting of Tantalum under Shock Compression Determined by Optical Pyrometry [J]. J Appl Phys, 2009, 106: 043519.
[24] Strachan A, Cagin T, Gulseren O, et al. First Principles Force Field for Metallic Tantalum [J]. Model Simul Mater Sci Eng, 2004, 12: 445-456.
[25] Errandonea D, Somayazulu B, Ditz R, et al. Systematics of Transition-Metal Melting [J]. Phys Rev B, 2003, 63: 132104.