[1] Chen Q Y, Zeng W M, Zhou H F, et al. Determination of the Standard Molar Enthalpy of Formation of -AlOOH (Diaspore) [J]. J Chem Thermodynamics, 1995, 27: 443.
[2] Winkler B, Hytha M, Pickard C, et al. Theoretical Investigation of Bonding in Diaspore [J]. Eur J Mineral, 2001, 13: 343.
[3] Fockenberg T, Wunder B, Grevel K D, et al. The Equilibrium DiasporeCorundum at High Pressures [J]. Eur Mineral, 1996, 8: 1293.
[4] Holland T J B, Redfern S A T, Pawley A R. Volume Behavior of Hydrous Minerals at High Pressure and Temperature: I. Thermal Expansion of Lawsonite, Zoisite, Clinozoisite, and Diaspore [J]. Am Mineral, 1996, 81: 341.
[5] Busing W R, Levy H A. A Single Crystal Neutron Diffraction Study of Diaspore, AlO(OH) [J]. Acta Cryst, 1958, 11: 798.
[6] Hill R. Crystal Structure Refinement and Electron Density Distribution in Diaspore [J]. J Phys Chem Minerals, 1979, 5: 179.
[7] Winkler B, Milman V, Hennion B, et al. Ab Initio Total Energy Study of Brucite, Diaspore and Hypothetical Hydrous Wadsleyite [J]. Phys Chem Minerals, 1995, 22: 461.
[8] Fasshauer D W, Chatterjee N D, Cemic L. A Thermodynamic Analysis of the System LiAlSiO4-NaAlSiO4-Al2O3-SiO2-H2O Based on New Heat Capacity, Thermal Expansion, and Compressibility Date for Selected Phases [J]. Contrib Mineral Petrol, 1998, 133: 186.
[9] Mao H K, Shu J, Hu J, et al. High-Pressure X-Ray Diffraction Study of Diaspore [J]. Solid State Comm, 1994, 90: 497.
[10] Ruff A L, Vanderborgh C A. Hydrogen Reduction of Ruby at High Pressure: Implication for Claims of Metallic Hydrogen [J]. Phys Rev Lett, 1991, 66: 754.
[11] Xu J A, Hu J, Ming L C, et al. The Compression of Diaspore, AlO(OH) at Room Temperature up to 27 GPa [J]. Gophys Research lett, 1994, 21: 161.
[12] Mao H K, Bell M T. Design and Varieties of the Megabar Cell [J]. Carnegie Institution of Washington Year Book, 1980, 79: 490.