[1] Mishima O, Stanley H E. The Relationship between Liquid, Supercooled and Glassy Water [J]. Nature(London), 1998, 396: 329-335.
[2] Cavazzoni C, Chiarotti G L, Scandolo S. Superionic and Metallic States of Water and Ammonia at Giant Planet Conditions [J]. Science, 1999, 283: 44-46.
[3] Belonoshko A, Saxena S K. A Molecular Dynamics Study of the Pressure-Volume Temperature Properties of Super-Critical Fluids: Ⅰ. H2O [J]. Geochim Cosmochim Acta, 1991, 55: 381-387.
[4] Brodholt J, Wood B. Simulations of the Structure and Thermodynamic Properties of Water at High Pressures and Temperatures [J]. J Geophys Res, 1993, 98: 519-536.
[5] Saul A, Wagner W. A Fundamental Equation for Water Covering the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa [J]. J Phys Chem Ref Data, 1989, 18: 1537-1564.
[6] Wagner W, Pruss A. The IAPWS Formulation(1995) for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use [J]. J Phys Chem Ref Data, 2002, 31: 387-535.
[7] Abramson E H, Brown J M. Equation of State of Water Based on Speeds of Sound Measured in the Diamond-Anvil Cell [J]. Geochim Cosmochim Acta, 2004, 68: 1827-1835.
[8] Frank M R, Fei Y W, Hu J Z. Constraining the Equation of State of Fluid H2O to 80 GPa Using the Melting Curve, Bulk Modulus, and Thermal Expansivity of Ice Ⅶ [J]. Geochim Cosmochim Acta, 2004, 68: 2781-2790.
[9] Mishima O, Endo S. Melting Curve of Ice Ⅶ [J]. J Chem Phys, 1978, 68: 4417-4418.
[10] Pistorius C W F T, Pistorius M C, Blakey J P, et al. Melting Curve of Ice Ⅶ to 200 kbar [J]. J Chem Phys, 1963, 38: 600-602.
[11] Datchi F, Loubeyre P, LeToullec R. Extended and Accurate Determination of the Melting Curves of Argon, Helium, Ice(H2O), and Hydrogen(H2) [J]. Phys Rev B, 2000, 61: 6535-6546.
[12] Lin J F, Militzer B, Struzhkin V V, et al. High Pressure-Temperature Raman Measurements of H2O Melting to 22 GPa and 900 K [J]. J Chem Phys, 2004, 121(17): 8423-8427.
[13] Schwager B, Chudinovskikh L, Gavriliuk A, et al. Melting Curve of H2O to 90 GPa Measured in a Laser-Heated Diamond Cell [J]. J Phys: Condens Matter, 2004, 16: 1177-1179.
[14] Li F F, Cui Q L, He Z, et al. High Pressure-Temperature Brillouin Study of Liquid Water: Evidence of the Structural Transition from Low-Density Water to High-Density Water [J]. J Chem Phys, 2005, 123: 174511(1)-174511(5).
[15] Mao H K, Bell P M, Shaner J, et al. Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Rbuy R1 Fluorescence Pressure Gauge from 0. 06 to 1 Mbar [J]. J Appl Phys, 1978, 49: 3276-3283.
[16] Ragan D D, Gustavsen R, Schiferl D. Calibration of the Ruby R1 and R2 Fluorescence Shift as a Function of Temperature from 0 to 600 K [J]. J Appl Phys, 1992, 72: 5539-5544.
[17] Li F F, Cui Q L, He Z, et al. Brillouin Scattering Spectroscopy for a Laser Heated Diamond Anvil Cell [J]. Appl Phys Lett, 2006, 88: 203507(1)-203507(3).
[18] Polian A. Brillouin Scattering at High Pressure: An Overview [J]. J Raman Spectrosc, 2003, 34: 633-637.