[1] 董湘怀, 仲町英治. 晶体塑性模型在板材成形计算机模拟中的应用 [J]. 中国机械工程, 1997, 8(4): 27–30, 118.

DONG X H, NAKAMACHI E. Application of crystal plastic model in computer simulation of sheet metal forming [J]. China Mechanical Engineering, 1997, 8(4): 27–30, 118.
[2] 刘海军, 方刚, 曾攀. 基于晶体塑性理论的大变形数值模拟技术 [J]. 塑性工程学报, 2006, 13(2): 1–8, 28. doi: 10.3969/j.issn.1007-2012.2006.02.001

LIU H J, FANG G, ZENG P. Numerical simulation of large deformation based on the theory of crystal plasticity [J]. Journal of Plastic Engineering, 2006, 13(2): 1–8, 28. doi: 10.3969/j.issn.1007-2012.2006.02.001
[3] 皮华春, 韩静涛, 薛永栋. 金属塑性成形的晶体塑性学有限元模拟研究进展 [J]. 机械工程学报, 2006, 42(3): 15–21. doi: 10.3321/j.issn:0577-6686.2006.03.003

PI H C, HAN J T, XUE Y D. Progress in finite element simulation of metal plasticity forming with crystal plasticity [J]. Journal of Mechanical Engineering, 2006, 42(3): 15–21. doi: 10.3321/j.issn:0577-6686.2006.03.003
[4] 司良英. FCC金属冷加工织构演变的晶体塑性有限元模拟 [D]. 沈阳: 东北大学, 2009.

SI L Y. Finite element simulation of crystal plasticity in FCC metal cold working texture evolution [D]. Shenyang: Northeastern University, 2009.
[5] 司良英, 邓关宇, 吕程. 基于Voronoi图的晶体塑性有限元多晶几何建模 [J]. 材料与冶金学报, 2009, 8(3): 193–197, 216.

SI L Y, DENG G Y, LÜ C. Crystal plastic finite element polycrystalline geometry modeling based on Voronoi diagram [J]. Journal of Materials and Metallurgy, 2009, 8(3): 193–197, 216.
[6] 张丰果, 董湘怀. 微塑性成形模拟材料细观建模 [J]. 模具技术, 2011(3): 16–19.

ZHANG F G, DONG X H. Microplastic forming simulates material microscopic modeling [J]. Mould Technology, 2011(3): 16–19.
[7] 郑文, 徐松林, 蔡超. 基于Hopkinson压杆的动态压剪复合加载实验研究 [J]. 力学学报, 2012, 44(1): 124–131.

ZHENG W, XU S L, CAI C. Experimental study on dynamic compression shear composite loading based on Hopkinson compression bar [J]. Journal of Mechanics, 2012, 44(1): 124–131.
[8] 章超, 徐松林, 王道荣. 花岗岩动静态压剪复合加载实验研究 [J]. 固体力学学报, 2014, 35(2): 115–123.

ZHANG C, XU S L, WANG D R. Experimental study on dynamic and static compressor-shear composite loading of granite [J]. Journal of Solid Mechanics, 2014, 35(2): 115–123.
[9] 李雪艳, 李志斌, 张舵. 闭孔泡沫铝准静态压剪性能研究 [J]. 高压物理学报, 2018, 32(3): 52–59. doi: 10.11858/gywlxb.20170655

LI X Y, LI Z B, ZHANG D. Study on quasi-static compressive shear properties of aluminum foam with closed-cell [J]. Journal of High Pressure Physics, 2018, 32(3): 52–59. doi: 10.11858/gywlxb.20170655
[10] RITTEL D, LEE S, RAVICHANDRAN G. A Shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2002, 42(1): 58–64. doi: 10.1007/BF02411052
[11] RITTEL D, RAVICHANDRAN G, LEE S. Large strain constitutive behavior of OFHC copper over a wide range of strain rates using the shear compression specimen [J]. Mechanics of Materials, 2002, 34(10): 627–642. doi: 10.1016/S0167-6636(02)00164-3
[12] DOROGOY A, RITTEL D. A numerical study of the applicability of the shear compression specimen to parabolic hardening materials [J]. Experimental Mechanics, 2006, 46(3): 355–366. doi: 10.1007/s11340-006-6414-8
[13] DOROGOY A, RITTEL D. Numerical validation of the shear compression specimen. Part Ⅱ: dynamic large strain testing [J]. Experimental Mechanics, 2005, 45(2): 178–185. doi: 10.1007/BF02428191
[14] DOROGOY A, RITTEL D. Numerical validation of the shear compression specimen. Part I: quasi-static large strain testing [J]. Experimental Mechanics, 2005, 45(2): 167–177. doi: 10.1007/BF02428190
[15] DOROGOY A, RITTEL D, GODINGER A. Modification of the shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2015, 55(9): 1627–1639. doi: 10.1007/s11340-015-0057-6
[16] VURAL M, MOLINARI A, BHATTACHARYYA N. Analysis of slot orientation in shear-compression specimen (SCS) [J]. Experimental Mechanics, 2010, 51(3): 263–273.
[17] ZHAO J, KNAUSS W G, RAVICHANDRAN G. A new shear-compression-specimen for determining quasistatic and dynamic polymer properties [J]. Experimental Mechanics, 2008, 49(3): 427–436.
[18] PIERCE D, ASARO R J, NEEDLEMAN A. Material rate sensitivity and localized deformation in crystalline solids [J]. Acta Metall, 1983, 31(12): 1951–1976. doi: 10.1016/0001-6160(83)90014-7
[19] ASARO R J, NEEDLEMAN A. Overview No. 42 texture development and strain hardening in rate dependent polycrystals [J]. Acta Metallurgica, 1985, 33(6): 923–953.
[20] HUANG Y. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program: MECH 178 [R]. Harvard University, 1991.
[21] 王国军, 孙强. 4032合金热挤压棒材变形行为及形变织构 [J]. 黑龙江冶金, 2013, 33(2): 1–5, 8.

WANG G J, SUN Q. Deformation behavior and deformation texture of hot extruded 4032 alloy bar [J]. Heilongjiang Metallurgy, 2013, 33(2): 1–5, 8.
[22] HUANG S Y, ZHANG S R, LI D Y. Simulation of texture evolution during plastic deformation of FCC, BCC and HCP structured crystals with crystal plasticity based finite element method [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(8): 1817–1825. doi: 10.1016/S1003-6326(11)60936-9
[23] 辛存, 赵聃, 闫晓鹏. 材料三维微结构表征及其晶体塑性有限元模拟 [J]. 计算力学学报, 2018, 36(2): 233–239.

XIN C, ZHAO D, YAN X P. 3D modeling microstructure and crystal plasticity finite element simulation [J]. Journal of Computational Mechanics, 2018, 36(2): 233–239.
[24] 齐康, 闫昊, 陈祥瑶. 利用ABAQUS模拟不同模态下的金属切削过程 [J]. 机械工程与自动化, 2018(2): 93–94.

QI K, YAN H, CHEN X Y. Metal cutting processes in different modes are simulated by ABAQUS [J]. Mechanical Engineering and Automation, 2018(2): 93–94.