Volume 36 Issue 5
Oct 2022
Turn off MathJax
Article Contents
LIU Jingyi, TAO Yu, FAN Chunmei, WU Binbin, LEI Li. High-Pressure Raman Spectroscopy of hcp Metals[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051102. doi: 10.11858/gywlxb.20220522
Citation: LIU Jingyi, TAO Yu, FAN Chunmei, WU Binbin, LEI Li. High-Pressure Raman Spectroscopy of hcp Metals[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 051102. doi: 10.11858/gywlxb.20220522

High-Pressure Raman Spectroscopy of hcp Metals

doi: 10.11858/gywlxb.20220522
  • Received Date: 26 Feb 2022
  • Rev Recd Date: 18 Mar 2022
  • Accepted Date: 18 Mar 2022
  • Available Online: 16 Sep 2022
  • Issue Publish Date: 11 Oct 2022
  • The lattice dynamics behavior of materials under high pressure can be studied by high-pressure Raman spectroscopy. However, Raman spectroscopic signal of metal samples at high pressure is difficult to obtain due to the fluorescence of the diamond in diamond anvil cell (DAC) and the strong reflection of the samples. In this work, we use DAC inclination scattering method to mitigate background noise. As a consequence, Raman spectroscopic signal of the hcp metal samples (Be, Re, Os) under high pressure have been achieved. In the case of Be, the pressure dependence of elastic constant C44 is obtained by measuring the shear Raman mode E2g at pressure up to 73 GPa. The proposed high-pressure Raman spectroscopy technique provides a new method to study bonding state, electronic structure, and phonon-electron coupling effects of metallic materials under high pressure.

     

  • loading
  • [1]
    LAZICKI A, DEWAELE A, LOUBEYRE P, et al. High-pressure-temperature phase diagram and the equation of state of beryllium [J]. Physical Review B, 2012, 86(17): 174118. doi: 10.1103/PhysRevB.86.174118
    [2]
    VERMA A K, RAVINDRAN P, RAO R S, et al. On the stability of rhenium up to 1 TPa pressure against transition to the bcc structure [J]. Bulletin of Materials Science, 2003, 26(1): 183–187. doi: 10.1007/BF02712810
    [3]
    DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [4]
    DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals [J]. Nature, 2015, 525(7568): 226–229. doi: 10.1038/nature14681
    [5]
    MERKEL S, GONCHAROV A F, MAO H K, et al. Raman spectroscopy of iron to 152 gigapascals: implications for earth’s inner core [J]. Science, 2000, 288(5471): 1626–1629. doi: 10.1126/science.288.5471.1626
    [6]
    GONCHAROV A F, STRUZHKIN V V. Raman spectroscopy of metals, high-temperature superconductors and related materials under high pressure [J]. Journal of Raman Spectroscopy, 2003, 34(7/8): 532–548.
    [7]
    雷力, 蒲梅芳, 冯雷豪, 等. 立方聚合氮(cg-N)的高温高压合成 [J]. 高压物理学报, 2018, 32(2): 020102. doi: 10.11858/gywlxb.20170672

    LEI L, PU M F, FENG L H, et al. Synthesis of cubic gauche nitrogen (cg-N) under high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020102. doi: 10.11858/gywlxb.20170672
    [8]
    高上攀, 姜小东, 胡启威, 等. Re3N的变温拉曼散射与高压同步辐射研究 [J]. 光散射学报, 2017, 29(1): 33–38.

    GAO S P, JIANG X D, HU Q W, et al. Temperature dependence on Raman spectra and high-pressure synchrotron radiation study of Re3N [J]. The Journal of Light Scattering, 2017, 29(1): 33–38.
    [9]
    范春梅, 刘静仪, 刘珊, 等. 氮化镓低温高压光谱研究 [J]. 光散射学报, 2020, 32(3): 259–265. doi: 10.13883/j.issn1004-5929.202003010

    FAN C M, LIU J Y, LIU S, et al. Low-temperature and high-pressure spectroscopy study of gallium nitride [J]. The Journal of Light Scattering, 2020, 32(3): 259–265. doi: 10.13883/j.issn1004-5929.202003010
    [10]
    张峰, 陶雨, 唐琦琪, 等. 三氧化二镓的高压拉曼光谱研究 [J]. 光散射学报, 2021, 33(1): 40–44. doi: 10.13883/j.issn1004-5929.202101005

    ZHANG F, TAO Y, TANG Q Q, et al. High-pressure Raman spectroscopy of Ga2O3 [J]. The Journal of Light Scattering, 2021, 33(1): 40–44. doi: 10.13883/j.issn1004-5929.202101005
    [11]
    RECH G L, ZORZI J E, PEROTTONI C A. Equation of state of hexagonal-close-packed rhenium in the terapascal regime [J]. Physical Review B, 2019, 100(17): 174107. doi: 10.1103/PhysRevB.100.174107
    [12]
    OCCELLI F, FARBER D L, BADRO J, et al. Experimental evidence for a high-pressure isostructural phase transition in osmium [J]. Physical Review Letters, 2004, 93(9): 095502. doi: 10.1103/PhysRevLett.93.095502
    [13]
    MA Y M, CUI T, ZHANG L J, et al. Electronic and crystal structures of osmium under high pressure [J]. Physical Review B, 2005, 72(17): 174103. doi: 10.1103/PhysRevB.72.174103
    [14]
    PERREAULT C S, VELISAVLJEVIC N, VOHRA Y K. High-pressure structural parameters and equation of state of osmium to 207 GPa [J]. Cogent Physics, 2017, 4(1): 1376899. doi: 10.1080/23311940.2017.1376899
    [15]
    KOUDELA D, RICHTER M, MÖBIUS A, et al. Lifshitz transitions and elastic properties of osmium under pressure [J]. Physical Review B, 2006, 74(21): 214103. doi: 10.1103/PhysRevB.74.214103
    [16]
    GLAZYRIN K, POUROVSKII L V, DUBROVINSKY L, et al. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition [J]. Physical Review Letters, 2013, 110(11): 117206. doi: 10.1103/PhysRevLett.110.117206
    [17]
    STEINLE-NEUMANN G, STIXRUDE L, COHEN R E. Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure [J]. Physical Review B, 2001, 63(5): 054103.
    [18]
    GILLET P, HEMLEY R J, MCMILLAN P F. Vibrational properties at high pressures and temperatures [J]. Reviews in Mineralogy and Geochemistry, 1998, 37(1): 525–590.
    [19]
    OLIJNYK H. Raman scattering in metallic Si and Ge up to 50 GPa [J]. Physical Review Letters, 1992, 68(14): 2232–2234. doi: 10.1103/PhysRevLett.68.2232
    [20]
    OLIJNYK H. High pressure Raman spectra of Gd, Lu and Y [J]. High Pressure Research, 1994, 13(1): 99–102.
    [21]
    OLIJNYK H, JEPHCOAT A P. Effect of pressure on Raman phonons in zirconium metal [J]. Physical Review B, 1997, 56(17): 10751–10753. doi: 10.1103/PhysRevB.56.10751
    [22]
    OLIJNYK H. Unusual broadening and splitting of the K≈0 transverse-optical phonon in hcp Mg at high pressure [J]. Journal of Physics: Condensed Matter, 1999, 11(34): 6589–6594. doi: 10.1088/0953-8984/11/34/311
    [23]
    OLIJNYK H, JEPHCOAT A P, NOVIKOV D L, et al. Pressure shift of the zone-center TO mode of Zn [J]. Physical Review B, 2000, 62(9): 5508–5512. doi: 10.1103/PhysRevB.62.5508
    [24]
    OLIJNYK H, JEPHCOAT A P. Raman spectra of beryllium to 23 GPa [J]. Journal of Physics: Condensed Matter, 2000, 12(41): 8913–8918. doi: 10.1088/0953-8984/12/41/317
    [25]
    OLIJNYK H, JEPHCOAT A P, REFSON K. On optical phonons and elasticity in the hcp transition metals Fe, Ru and Re at high pressure [J]. Europhysics Letters, 2001, 53(4): 504–510. doi: 10.1209/epl/i2001-00181-4
    [26]
    OLIJNYK H, GROSSHANS W A, JEPHCOAT A P. Lattice vibrations and electronic transitions in the rare-earth metals: praseodymium under pressure [J]. Physical Review Letters, 2004, 93(25): 255505. doi: 10.1103/PhysRevLett.93.255505
    [27]
    OLIJNYK H, NAKANO S, JEPHCOAT A P, et al. Lattice-dynamical studies of Ti in the hcp- and ω-phase by Raman scattering at high-pressure [J]. Physical Review B, 2006, 74(10): 104302. doi: 10.1103/PhysRevB.74.104302
    [28]
    OLIJNYK H, NAKANO S, JEPHCOAT A P, et al. Unusual pressure response of the E2g mode and elastic shear modulus C44 in hcp scandium [J]. Journal of Physics: Condensed Matter, 2006, 18(48): 10971–10976. doi: 10.1088/0953-8984/18/48/024
    [29]
    OLIJNYK H, NAKANO S, TAKEMURA K. Vibrational and elastic properties of hcp barium under pressure and their relation to its electronic structure [J]. Solid State Communications, 2007, 142(1/2): 41–44.
    [30]
    GONCHAROV A F, CROWHURST J, ZAUG J M. Elastic and vibrational properties of cobalt to 120 GPa [J]. Physical Review Letters, 2004, 92(11): 115502. doi: 10.1103/PhysRevLett.92.115502
    [31]
    GONCHAROV A F, STRUZHKIN V V, MAO H K, et al. Spectroscopic evidence for broken-symmetry transitions in dense lithium up to megabar pressures [J]. Physical Review B, 2005, 71(18): 184114. doi: 10.1103/PhysRevB.71.184114
    [32]
    MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458(7235): 182–185. doi: 10.1038/nature07786
    [33]
    NOVOSELOV D, ANISIMOV V I, PONOSOV Y S. Phonon mode softening and elastic properties of hafnium under pressure [J]. Physical Review B, 2018, 97(18): 184108. doi: 10.1103/PhysRevB.97.184108
    [34]
    LIU J Y, TAO Y, FAN C M, et al. High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44 [J]. Chinese Physics B, 2022, 31(3): 037801. doi: 10.1088/1674-1056/ac1eff
    [35]
    MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [36]
    AKAHAMA Y, KAWAMURA H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range [J]. Journal of Applied Physics, 2004, 96(7): 3748–3751. doi: 10.1063/1.1778482
    [37]
    LIU S, TANG Q Q, WU B B, et al. Raman scattering from highly-stressed anvil diamond [J]. Chinese Physics B, 2021, 30(1): 016301. doi: 10.1088/1674-1056/abc7a7
    [38]
    PU M F, ZHANG F, LIU S, et al. Tensile-strain induced phonon splitting in diamond [J]. Chinese Physics B, 2019, 28(5): 053102. doi: 10.1088/1674-1056/28/5/053102
    [39]
    FELDMAN D W, PARKER J H JR, ASHKIN M. Raman scattering by optical modes of metals [J]. Physical Review Letters, 1968, 21(9): 607–608. doi: 10.1103/PhysRevLett.21.607
    [40]
    VELISAVLJEVIC N, CHESNUT G N, VOHRA Y K, et al. Structural and electrical properties of beryllium metal to 66 GPa studied using designer diamond anvils [J]. Physical Review B, 2002, 65(17): 172107. doi: 10.1103/PhysRevB.65.172107
    [41]
    EVANS W J, LIPP M J, CYNN H, et al. X-ray diffraction and Raman studies of beryllium: static and elastic properties at high pressures [J]. Physical Review B, 2005, 72(9): 094113. doi: 10.1103/PhysRevB.72.094113
    [42]
    FRAAS L M, PORTO S P S, LOH E. Symmetry in Raman scattering from the optical phonon in single crystal beryllium [J]. Solid State Communications, 1970, 8(10): 803–805. doi: 10.1016/0038-1098(70)90436-9
    [43]
    PONOSOV Y S, STRUZHKIN V V, GONCHAROV A F, et al. Q-dependent electronic excitations in osmium: pressure- and temperature-induced effects [J]. Physical Review B, 2008, 78(24): 245106. doi: 10.1103/PhysRevB.78.245106
    [44]
    戚磊, 雷力, 冯雷豪, 等. 铼的弹性剪切参数C44对温度与压力响应的原位拉曼光谱研究 [J]. 光谱学与光谱分析, 2018, 38(12): 3764–3768.

    QI L, LEI L, FENG L H, et al. Response of elastic shear parameter C44 of rhenium to temperature and pressure: a Raman spectroscopy study [J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3764–3768.
    [45]
    GONCHAROV A F, GREGORYANZ E, STRUZHKIN V V, et al. Raman scattering of metals to very high pressures [EB/OL]. (2001−12−20). https://arxiv.org/abs/cond-mat/0112404.
    [46]
    UPADHYAYA J C, SHARMA D K, PRAKASH D, et al. Three-particle forces in the lattice dynamics of some hexagonal close-packed metals [J]. Canadian Journal of Physics, 1994, 72(1/2): 61–72.
    [47]
    OLIJNYK H, JEPHCOAT A P. The E2g phonon and the elastic constant C44 in hexagonal van der Waals bonded solids [J]. Journal of Physics: Condensed Matter, 2000, 12(50): 10423–10428. doi: 10.1088/0953-8984/12/50/305
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(229) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return