Volume 35 Issue 5
Sep 2021
Turn off MathJax
Article Contents
LI Bing, DING Yang, WANG Lin, WENG Zuqian, YANG Wenge, JI Cheng, YANG Ke, MAO Ho-kwang. Metallization of Hydrogen under Static High Pressure and the Inelastic X-ray Scattering Technique[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 050101. doi: 10.11858/gywlxb.20210864
Citation: LI Bing, DING Yang, WANG Lin, WENG Zuqian, YANG Wenge, JI Cheng, YANG Ke, MAO Ho-kwang. Metallization of Hydrogen under Static High Pressure and the Inelastic X-ray Scattering Technique[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 050101. doi: 10.11858/gywlxb.20210864

Metallization of Hydrogen under Static High Pressure and the Inelastic X-ray Scattering Technique

doi: 10.11858/gywlxb.20210864
  • Received Date: 11 Aug 2021
  • Rev Recd Date: 06 Sep 2021
  • The research on hydrogen under high pressure has always been a hot topic both in experimental and theoretical physics, the enthusiasm is rooted from the pursuit of its pressure-induced metallic state – metallic hydrogen. The pressure induced metallization of hydrogen is an electric phase transition from a wide gap insulator to a small gap semiconductor, and finally to a closed gap metal. However, due to the limitation of high pressure experiment conditions, the bandgap and electronic structure of the wide-gap hydrogen has never been directly observed. In this paper we will discuss the technical challenge and the development of experiment research on hydrogen metallization, meanwhile we will present our experiment results and the technical advance on the direct measurement of the wide-gap hydrogen by using inelastic X-ray scattering technique, and finally the outlook.

     

  • loading
  • [1]
    WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
    [2]
    MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
    [3]
    GENG H Y. Public debate on metallic hydrogen to boost high pressure research [J]. Matter and Radiation at Extremes, 2017, 2(6): 275–277. doi: 10.1016/j.mre.2017.10.001
    [4]
    GREGORYANZ E, JI C, DALLADAY-SIMPSON P, et al. Everything you always wanted to know about metallic hydrogen but were afraid to ask [J]. Matter and Radiation at Extremes, 2020, 5(3): 038101. doi: 10.1063/5.0002104
    [5]
    ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748
    [6]
    BABAEV E, SUDBØ A, ASHCROFT N W. A superconductor to superfluid phase transition in liquid metallic hydrogen [J]. Nature, 2004, 431(7009): 666–668. doi: 10.1038/nature02910
    [7]
    BONEV S A, SCHWEGLER E, OGITSU T, et al. A quantum fluid of metallic hydrogen suggested by first-principles calculations [J]. Nature, 2004, 431(7009): 669–672. doi: 10.1038/nature02968
    [8]
    SILVERA I F, COLE J W. Metallic hydrogen: the most powerful rocket fuel yet to exist [J]. Journal of Physics: Conference Series, 2010, 215: 012194. doi: 10.1088/1742-6596/215/1/012194
    [9]
    GINZBURG V L. Nobel lecture: on superconductivity and superfluidity (what I have and have not managed to do) as well as on the "physical minimum" at the beginning of the ⅩⅩⅠ century [J]. Reviews of Modern Physics, 2004, 76(3): 981–998. doi: 10.1103/RevModPhys.76.981
    [10]
    MAO H K, HEMLEY R J. Ultrahigh-pressure transitions in solid hydrogen [J]. Reviews of Modern Physics, 1994, 66(2): 671–692. doi: 10.1103/RevModPhys.66.671
    [11]
    GONCHAROV A. Phase diagram of hydrogen at extreme pressures and temperatures; updated through 2019 (review article) [J]. Low Temperature Physics, 2020, 46(2): 97–103. doi: 10.1063/10.0000526
    [12]
    DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
    [13]
    LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
    [14]
    EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x
    [15]
    HERZFELD K F. On atomic properties which make an element a metal [J]. Physical Review, 1927, 29(5): 701–705. doi: 10.1103/PhysRev.29.701
    [16]
    FCDWARDS P P, SIENKO M J. What is a metal? [J]. International Reviews in Physical Chemistry, 1983, 3(1): 83–137. doi: 10.1080/01442358309353340
    [17]
    EREMETS M I, TROYAN I A. Conductive dense hydrogen [J]. Nature Materials, 2011, 10(12): 927–931. doi: 10.1038/nmat3175
    [18]
    NELLIS W J, RUOFF A L, SILVERA I F. Has metallic hydrogen been made in a diamond anvil cell? [EB/OL]. (2012-01-02)[2021-05-21]. https://arxiv.org/abs/1201.0407.
    [19]
    HOWIE R T, GUILLAUME C L, SCHELER T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Physical Review Letters, 2012, 108(12): 125501. doi: 10.1103/PhysRevLett.108.125501
    [20]
    MAO H K, HEMLEY R J, HANFLAND M. Infrared reflectance measurements of the insulator-metal transition in solid hydrogen [J]. Physical Review Letters, 1990, 65(4): 484–487. doi: 10.1103/PhysRevLett.65.484
    [21]
    HEMLEY R J, MAO H K. Optical studies of hydrogen above 200 gigapascals: evidence for metallization by band overlap [J]. Science, 1989, 244(4911): 1462–1465. doi: 10.1126/science.244.4911.1462
    [22]
    EGGERT J H, MOSHARY F, EVANS W J, et al. Absorption and reflectance in hydrogen up to 230 GPa: implications for metallization [J]. Physical Review Letters, 1991, 66(2): 193–196. doi: 10.1103/PhysRevLett.66.193
    [23]
    HANFLAND M, HEMLEY R J, MAO H K. Optical absorption measurements of hydrogen at megabar pressures [J]. Physical Review B, 1991, 43(10): 8767–8770. doi: 10.1103/PhysRevB.43.8767
    [24]
    HEMLEY R J, MAO H K, GONCHAROV A F, et al. Synchrotron infrared spectroscopy to 0.15 eV of H2 and D2 at megabar pressures [J]. Physical Review Letters, 1996, 76(10): 1667–1670. doi: 10.1103/PhysRevLett.76.1667
    [25]
    CHEN N H, STERER E, SILVERA I F. Extended infrared studies of high pressure hydrogen [J]. Physical Review Letters, 1996, 76(10): 1663–1666. doi: 10.1103/PhysRevLett.76.1663
    [26]
    GONCHAROV A F, GREGORYANZ E, HEMLEY R J, et al. Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(25): 14234–14237. doi: 10.1073/pnas.201528198
    [27]
    LOUBEYRE P, OCCELLI F, LETOULLEC R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen [J]. Nature, 2002, 416(6881): 613–617. doi: 10.1038/416613a
    [28]
    GONCHAROV A F, TSE J S, WANG H, et al. Bonding, structures, and band gap closure of hydrogen at high pressures [J]. Physical Review B, 2013, 87(2): 024101. doi: 10.1103/PhysRevB.87.024101
    [29]
    LIU X D, DALLADAY-SIMPSON P, HOWIE R T, et al. Comment on "observation of the Wigner-Huntington transition to metallic hydrogen" [J]. Science, 2017, 357(6353): 2286. doi: 10.1126/science.aan2286
    [30]
    GONCHAROV A F, STRUZHKIN V V. Comment on "observation of the Wigner-Huntington transition to metallic hydrogen" [J]. Science, 2017, 357(6353): 9736. doi: 10.1126/science.aam9736
    [31]
    EREMETS M I, DROZDOV A P. Comments on the claimed observation of the wigner-huntington transition to metallic hydrogen [EB/OL]. (2017-02-16)[2021-05-21]. https://arxiv.org/abs/1702.05125v1.
    [32]
    LOUBEYRE P, OCCELLI F, DUMAS P. Comment on: observation of the Wigner-Huntington transition to metallic hydrogen [EB/OL]. (2017-02-23)[2021-05-21]. https://arxiv.org/abs/1702.07192.
    [33]
    SILVERA I, DIAS R. Response to critiques on observation of the Wigner-Huntington transition to metallic hydrogen [EB/OL](2017-03-08)[2021-05-21]. https://arxiv.org/abs/1703.03064
    [34]
    WEMPLE S H, DIDOMENICO M JR. Behavior of the electronic dielectric constant in covalent and ionic materials [J]. Physical Review B, 1971, 3(4): 1338–1351. doi: 10.1103/PhysRevB.3.1338
    [35]
    VAN STRAATEN J, SILVERA I F. Pressure dependence of the optical-absorption edge of solid hydrogen in a diamond-anvil cell [J]. Physical Review B, 1988, 37(11): 6478–6481. doi: 10.1103/PhysRevB.37.6478
    [36]
    HEMLEY R J, HANFLAND M, MAO H K. High-pressure dielectric measurements of solid hydrogen to 170 GPa [J]. Nature, 1991, 350(6318): 488–491. doi: 10.1038/350488a0
    [37]
    GARCÍA A, COHEN M L, EGGERT J H, et al. Dielectric properties of solid molecular hydrogen at high pressure [J]. Physical Review B, 1992, 45(17): 9709–9715. doi: 10.1103/PhysRevB.45.9709
    [38]
    EGGERT J H, GOETTEL K A, SILVERA I F. High-pressure dielectric catastrophe and the possibility that the hydrogen-A phase is metallic [J]. Europhysics Letters, 1990, 11(8): 775–781. doi: 10.1209/0295-5075/11/8/014
    [39]
    MAO H K, JEPHCOAT A P, HEMLEY R J, et al. Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 Gigapascals [J]. Science, 1988, 239(4844): 1131–1134. doi: 10.1126/science.239.4844.1131
    [40]
    LOUBEYRE P, LETOULLEC R, HAUSERMANN D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures [J]. Nature, 1996, 383(6602): 702–704. doi: 10.1038/383702a0
    [41]
    BESEDIN S P, JEPHCOAT A P, HANFLAND M, et al. Powder diffraction from compressed molecular hydrogen in a diamond-anvil cell [J]. Applied Physics Letters, 1997, 71(4): 470–472. doi: 10.1063/1.119582
    [42]
    AKAHAMA Y, NISHIMURA M, KAWAMURA H, et al. Evidence from X-ray diffraction of orientational ordering in phase Ⅲ of solid hydrogen at pressures up to 183 GPa [J]. Physical Review B, 2010, 82(6): 060101. doi: 10.1103/PhysRevB.82.060101
    [43]
    JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-9
    [44]
    吉诚, 李冰, 杨文革, 等. 静态超高压下氢的晶体结构实验研究 [J]. 高压物理学报, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520

    JI C, LI B, YANG W G, et al. Crystallographic studies of ultra-dense solid hydrogen [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520
    [45]
    JI C, LI B, LIU W J, et al. Crystallography of low Z material at ultrahigh pressure: case study on solid hydrogen [J]. Matter and Radiation at Extremes, 2020, 5(3): 038401. doi: 10.1063/5.0003288
    [46]
    PRAVICA M G, SILVERA I F. NMR study of ortho-para conversion at high pressure in hydrogen [J]. Physical Review Letters, 1998, 81(19): 4180–4183. doi: 10.1103/PhysRevLett.81.4180
    [47]
    MEIER T, LANIEL D, PENA-ALVAREZ M, et al. Nuclear spin coupling crossover in dense molecular hydrogen [J]. Nature Communications, 2020, 11(1): 6334. doi: 10.1038/s41467-020-19927-y
    [48]
    MEIER T, KHANDARKHAEVA S, JACOBS J, et al. Improving resolution of solid state NMR in dense molecular hydrogen [J]. Applied Physics Letters, 2019, 115(13): 131903. doi: 10.1063/1.5123232
    [49]
    MONSERRAT B, ASHBROOK S E, PICKARD C J. Nuclear magnetic resonance spectroscopy as a dynamical structural probe of hydrogen under high pressure [J]. Physical Review Letters, 2019, 122(13): 135501. doi: 10.1103/PhysRevLett.122.135501
    [50]
    SCHÜLKE W. Inelastic x-ray scattering [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 280(2/3): 338–348. doi: 10.1016/0168-9002(89)90930-3
    [51]
    RUEFF J P, SHUKLA A. Inelastic x-ray scattering by electronic excitations under high pressure [J]. Reviews of Modern Physics, 2010, 82(1): 847–896. doi: 10.1103/RevModPhys.82.847
    [52]
    MAO H K, KAO C C, HEMLEY R J. Inelastic x-ray scattering at ultrahigh pressures [J]. Journal of Physics: Condensed Matter, 2001, 13(34): 7847–7858. doi: 10.1088/0953-8984/13/34/323
    [53]
    SHEN G Y, MAO H K. High-pressure studies with x-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
    [54]
    MAO H K, SHIRLEY E L, DING Y, et al. Electronic structure of crystalline 4He at high pressures [J]. Physical Review Letters, 2010, 105(18): 186404. doi: 10.1103/PhysRevLett.105.186404
    [55]
    MACDONALD C A. Focusing polycapillary optics and their applications [J]. X-Ray Optics and Instrumentation, 2011, 2010: 867049. doi: 10.1155/2010/867049
    [56]
    CHOW P, XIAO Y M, ROD E, et al. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure [J]. Review of Scientific Instruments, 2015, 86(7): 072203. doi: 10.1063/1.4926890
    [57]
    杨科, 蒋升, 闫帅, 等. 上海同步辐射光源高压相关线站概述 [J]. 高压物理学报, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584

    YANG K, JIANG S, YAN S, et al. Application of Shanghai synchrotron radiation source in high pressure research [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584
    [58]
    SCHÜLKE W, NAGASAWA H, MOURIKIS S, et al. Dynamic structure of electrons in Be metal by inelastic x-ray scattering spectroscopy [J]. Physical Review B, 1989, 40(18): 12215–12228. doi: 10.1103/PhysRevB.40.12215
    [59]
    CALIEBE W A, SOININEN J A, SHIRLEY E L, et al. Dynamic structure factor of diamond and LiF measured using inelastic X-ray scattering [J]. Physical Review Letters, 2000, 84(17): 3907–3910. doi: 10.1103/PhysRevLett.84.3907
    [60]
    李晓东, 袁清习, 徐伟, 等. 第四代高能同步辐射光源HEPS及高压相关线站建设 [J]. 高压物理学报, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554

    LI X D, YUAN Q X, XU W, et al. Introduction of fourth-generation high energy photon source HEPS and the beamlines for high-pressure research [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(1714) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return