Volume 35 Issue 6
Nov 2021
Turn off MathJax
Article Contents
HE Yunlong, ZHANG Yuduo, YUAN Bihe, CHEN Xianfeng, CHEN Wentao, YANG Manjiang, WANG Xin, CHEN Gongqing. Fire and Explosion Suppression Performance of Luffa Sponge in Premixed Methane/Air Gas[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065202. doi: 10.11858/gywlxb.20210778
Citation: HE Yunlong, ZHANG Yuduo, YUAN Bihe, CHEN Xianfeng, CHEN Wentao, YANG Manjiang, WANG Xin, CHEN Gongqing. Fire and Explosion Suppression Performance of Luffa Sponge in Premixed Methane/Air Gas[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065202. doi: 10.11858/gywlxb.20210778

Fire and Explosion Suppression Performance of Luffa Sponge in Premixed Methane/Air Gas

doi: 10.11858/gywlxb.20210778
  • Received Date: 20 Apr 2021
  • Rev Recd Date: 17 May 2021
  • Based on the fire and explosion-proof mechanisms of porous materials, pipeline explosion system, pressure sensor, high-speed camera and other equipment were used to study the suppression effects of natural luffa sponge (different filling positions: 1.9 and 4.4 m from the ignition location; different filling lengths: 5, 8 and 10 cm) on the explosion pressure and flame propagation in premixed methane/air gas with methane concentration of 9.5% by volume. The experimental results show that: under different conditions, luffa sponge has inhibitory effect on the explosion pressure and flame propagation. Meanwhile, it has the obstruction pressure effect. When the luffa was filled at a distance of 1.9 m from the ignition location, its inhibition effects on the explosion pressure and flame propagation rate are better than those of filling position at 4.4 m. When the filling position of luffa is constant, the filling length exerts significant influence on the explosion pressure and flame propagation rate. When the material was filled at a distance of 1.9 m from the initial detonation point, the flame propagation was completely blocked by the three lengths of loofah, and the material with the filling length of 10 cm has the best explosion suppression effect. Compared with unfilled condition, its maximum explosion pressure and maximum explosion pressure rising rate decrease by 73.90% and 71.72%, respectively.

     

  • loading
  • [1]
    陈鹏, 杨永波, 郭实龙, 等. 金属丝网对甲烷/空气预混火焰传播影响的研究 [J]. 中国安全科学学报, 2014, 24(7): 33–36.

    CHEN P, YANG Y B, GUO S L, et al. Study on influence of metal mesh on methane/air premixed mixture flame propagation [J]. China Safety Science Journal, 2014, 24(7): 33–36.
    [2]
    程方明, 常助川, 高彤彤, 等. 不同位置多孔障碍物对预混火焰传播的影响 [J]. 中国安全科学学报, 2020, 30(11): 114–120.

    CHENG F M, CHANG Z C, GAO T T, et al. Influence of multi-hole obstacles at different locations on premixed flame’s propagation [J]. China Safety Science Journal, 2020, 30(11): 114–120.
    [3]
    崔洋洋, 王志荣, 钱承锦,等. 丝网结构对容器管道开口系统气体爆炸的影响 [J]. 解放军理工大学学报(自然科学版), 2017, 18(1): 87–91.

    CUI Y Y, WANG Z R, QIAN C J, et al. Effect of wire mesh on gas explosion in spherical vessel connected to pipe opening to atmosphere [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2017, 18(1): 87–91.
    [4]
    JOO H I, DUNCAN K, CICCARELLI G. Flame quenching performance of ceramic foam [J]. Combustion Science and Technology, 2006, 178(10/11): 1755–7769. doi: 10.1080/00102200600788692
    [5]
    WANG C, HUANG F L, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. doi: 10.1016/j.jlp.2016.05.021
    [6]
    KITAGAWA K, TAKAYAMA K, YASUHARA M. Attenuation of shock waves propagating in polyurethane foams [J]. Shock Waves, 2006, 15(6): 437–445. doi: 10.1007/s00193-006-0042-1
    [7]
    邢志祥, 杜贞, 欧红香, 等. 新型多孔非金属材料阻火抑爆性能研究 [J]. 中国安全科学学报, 2015, 25(7): 74–79.

    XING Z X, DU Z, OU H X, et al. Study on fire resistance-explosion proof performance of novel porous non-metallic material [J]. China Safety Science Journal, 2015, 25(7): 74–79.
    [8]
    张新, 张鑫, 吴洁, 等. 聚丙烯阻隔抑爆材料的制备与阻燃性能研究 [J]. 安全与环境工程, 2018, 25(6): 132–138.

    ZHANG X, ZHANG X, WU J, et al. Preparation and flame retardant properties of polypropylene explosion-proof materials [J]. Safety and Environmental Engineering, 2018, 25(6): 132–138.
    [9]
    余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27.

    YU M G, YANG X F, ZHENG K, et al. Influence of obstacle on flame propagation laws of gas and coal dust explosion [J]. Explosion and Shock Waves, 2018, 38(1): 19–27.
    [10]
    王磊, 司荣军, 苗磊, 等. 障碍物压力反射特性对瓦斯爆炸传播影响的数值模拟研究 [J]. 中国安全生产科学技术, 2020, 16(8): 106–112.

    WANG L, SI R J, MIAO L, et al. Numerical simulation research on influence of obstacle pressure reflection characteristics on gas explosion propagation [J]. China Safety Science Journal, 2020, 16(8): 106–112.
    [11]
    徐阿猛, 陈学习, 贾进章. 障碍物对瓦斯爆炸冲击波传播的影响研究 [J]. 中国安全科学学报, 2019, 29(9): 96–101.

    XU A M, CHEN X X, JIA J Z. Effects of obstacles on gas explosion shock wave propagation [J]. China Safety Science Journal, 2019, 29(9): 96–101.
    [12]
    徐海顺, 高林杰, 苏登. 铝镁合金泡沫抑制甲烷-空气混合物爆炸火焰传播 [J]. 中国安全科学学报, 2019, 29(1): 81–86.

    XU H S, GAO L J, SU D. Suppression of methane-air mixtures explosion flame propagation using aluminum-magnesium alloy-based foam composite [J]. China Safety Science Journal, 2019, 29(1): 81–86.
    [13]
    时本军, 穆朝民, 周辉, 等. 空腔体积比对甲烷爆炸冲击波传播机制的影响 [J]. 中国安全科学学报, 2020, 30(3): 87–93.

    SHI B J, MU Z M, ZHOU H, et al. Influence of cavity volume ratio on propagation of methane blast wave [J]. China Safety Science Journal, 2020, 30(3): 87–93.
    [14]
    NIE B S, HE X Q, HE R M, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation [J]. Journal of Hazardous Materials, 2011, 192(2): 741–747. doi: 10.1016/j.jhazmat.2011.05.083
    [15]
    喻健良, 闫兴清. 硅酸铝棉对火焰速度和爆炸超压的抑制作用 [J]. 爆炸与冲击, 2013, 33(4): 363–368. doi: 10.3969/j.issn.1001-1455.2013.04.005

    YU J L, YAN X Q. Suppression of flame speed and explosion over pressure by aluminum silicate wool [J]. Explosion and Shock Waves, 2013, 33(4): 363–368. doi: 10.3969/j.issn.1001-1455.2013.04.005
    [16]
    宋先钊, 解立峰, 李斌, 等. 甲烷气氛条件下网状铝合金材料阻隔防爆性能研究 [J]. 消防科学与技术, 2018, 37(11): 1494–1497. doi: 10.3969/j.issn.1009-0029.2018.11.013

    SONG X Z, XIE L F, LI B, et al. Study on the barrier explosion-proof performance of mesh aluminum alloy under methane atmosphere [J]. Fire Science and Technology, 2018, 37(11): 1494–1497. doi: 10.3969/j.issn.1009-0029.2018.11.013
    [17]
    李祥春, 聂百胜, 杨春丽,等. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响 [J]. 高压物理学报, 2017, 31(2): 135–147.

    LI X C, NIE B S, YANG C L, et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 135–147.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(548) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return