Volume 35 Issue 6
Nov 2021
Turn off MathJax
Article Contents
BAI Chen, YANG Kun, WU Yanqing, GAO Hongquan, XUE Haijiao. Numerical Simulation for PBX Charges Safety of Different Types During Penetration[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065101. doi: 10.11858/gywlxb.20210754
Citation: BAI Chen, YANG Kun, WU Yanqing, GAO Hongquan, XUE Haijiao. Numerical Simulation for PBX Charges Safety of Different Types During Penetration[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065101. doi: 10.11858/gywlxb.20210754

Numerical Simulation for PBX Charges Safety of Different Types During Penetration

doi: 10.11858/gywlxb.20210754
  • Received Date: 27 Mar 2021
  • Rev Recd Date: 16 Apr 2021
  • In order to analyze the mechanical response and damage-ignition process of typical explosive charges in projectiles during penetrating concrete targets, the combined microcrack and microvoid model (CMM) were used to investigate the compressive wave propagation, damage and temperature rise mechanism of PBX charge in penetration process. The constitutive model parameters of two kinds of explosives were calibrated. Meanwhile, the difference between two typical PBXs (pressed PBX04 and casted GOFL-5) in response to penetration process is compared. The results show that, the yield strength, hardening modulus, initial microcrack density and microcrack size of GOFL-5 are lower than those of PBX04. The damage of microcrack in the head of PBX04 is higher than that of GOFL-5 in the initial loading stage. During the whole penetration process, the most serious microcrack damage areas of the two kinds of explosives are the head and tail. Shear-crack hotspot is the dominated ignition mechanism for PBX04, and the temperature rise of GOFL-5 is lower than that of PBX04.

     

  • loading
  • [1]
    唐明峰, 李明, 蓝林钢. 浇注PBX力学性能的研究进展 [J]. 含能材料, 2013, 21(6): 812–817. doi: 10.3969/j.issn.1006-9941.2013.06.024

    TANG M F, LI M, LAN L G. Review on the mechanical properties of cast PBXs [J]. Chinese Journal of Energetic Materials, 2013, 21(6): 812–817. doi: 10.3969/j.issn.1006-9941.2013.06.024
    [2]
    李媛媛, 南海. 国外浇注PBX炸药在硬目标侵彻武器中的应用 [J]. 飞航导弹, 2012(11): 88–91.

    LI Y Y, NAN H. Application of foreign casting PBX explosive in hard target penetration weapons [J]. Cruise Missile, 2012(11): 88–91.
    [3]
    吴会民, 卢芳云, 卢力, 等. 三种含能材料力学行为应变率效应的实验研究 [J]. 含能材料, 2004, 12(4): 40–43.

    WU H M, LU F Y, LU L, et al. Experimental studies on strain rate effects of mechanical behaviors of energetic materials [J]. Chinese Journal of Energetic Materials, 2004, 12(4): 40–43.
    [4]
    韩小平, 张元冲, 沈亚鹏, 等. Comp. B复合炸药动态压缩力学性能和本构关系的研究 [J]. 实验力学, 1996, 11(3): 303–310.

    HAN X P, ZHANG Y C, SHEN Y P, et al. Dynamic behavior and constitutive model of Comp. B explosive [J]. Journal of Experimental Mechanics, 1996, 11(3): 303–310.
    [5]
    罗景润. PBX的损伤、断裂及本构关系研究[D]. 绵阳: 中国工程物理研究院, 2001.

    LUO J R. Study on damage, fracture and constitutive relation of PBX [D]. Mianyang: China Academy of Engineering Physics, 2001.
    [6]
    MA X, LI X G, ZHENG X X, et al. Weak shock loadings induce potential hot spots formation around an intergranular pore [J]. Journal of Applied Physics, 2017, 121(11): 115102. doi: 10.1063/1.4978355
    [7]
    MA X, LI X G, ZHENG X X, et al. Crack initiation and potential hot-spot formation around a cylindrical defect under dynamic compression [J]. Journal of Applied Physics, 2017, 122(18): 185104. doi: 10.1063/1.4998679
    [8]
    李英雷, 李大红, 胡时胜, 等. TATB钝感炸药本构关系的实验研究 [J]. 爆炸与冲击, 1999, 19(4): 353–359. doi: 10.3321/j.issn:1001-1455.1999.04.011

    LI Y L, LI D H, HU S S, et al. Experimental study on constitutive relation of TATB insensitive explosive [J]. Explosion and Shock Waves, 1999, 19(4): 353–359. doi: 10.3321/j.issn:1001-1455.1999.04.011
    [9]
    李俊玲, 卢芳云, 傅华, 等. 某PBX炸药的动态力学性能研究 [J]. 高压物理学报, 2011, 25(2): 159–164. doi: 10.11858/gywlxb.2011.02.012

    LI J L, LU F Y, FU H, et al. Research on the dynamic behavior of a PBX explosive [J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 159–164. doi: 10.11858/gywlxb.2011.02.012
    [10]
    TAN H. The cohesive law of particle/binder interfaces in solid propellants [J]. Progress in Propulsion Physics, 2011, 2: 59–66.
    [11]
    WANG J C, LUO J R. Predicting the effective elastic properties of polymer bonded explosives based on micromechanical methods [J]. Journal of Energetic Materials, 2018, 36(2): 211–222. doi: 10.1080/07370652.2017.1354098
    [12]
    BENELFEKKAH A, FRACHON A, GRATTON M, et al. Analytical and numerical comparison of discrete damage models with induced anisotropy [J]. Engineering Fracture Mechanics, 2014, 121/122: 28–39. doi: 10.1016/j.engfracmech.2014.03.022
    [13]
    PICART D, BENELFELLAH A, BRIGOLLE J L, et al. Characterization and modeling of the anisotropic damage of a high-explosive composition [J]. Engineering Fracture Mechanics, 2014, 131: 525–537. doi: 10.1016/j.engfracmech.2014.09.009
    [14]
    张馨予, 吴艳青, 黄风雷. PBX装药弹体侵彻混凝土薄板的数值模拟 [J]. 含能材料, 2018, 26(1): 101–108. doi: 10.11943/j.issn.1006-9941.2018.01.013

    ZHANG X Y, WU Y Q, HUANG F L. Numerical simulation on the dynamic damage of PBX charges filled in projectiles during penetrating thin concrete targets [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 101–108. doi: 10.11943/j.issn.1006-9941.2018.01.013
    [15]
    石啸海, 余春祥, 戴开达, 等. 侵彻过程中弹头形状对PBX炸药损伤的影响 [J]. 弹箭与制导学报, 2019, 39(3): 81–85.

    SHI X H, YU C X, DAI K D, et al. The influence of nose shape to dynamic damage of PBX charge during the penetration process [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(3): 81–85.
    [16]
    石啸海, 戴开达, 陈鹏万, 等. 战斗部侵彻过程中PBX装药动态损伤数值模拟 [J]. 中国测试, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026

    SHI X H, DAI K D, CHEN P W, et al. Numerical simulation of dynamic damage of PBX charge during the warhead penetration process [J]. China Measurement and Test, 2016, 42(10): 138–142. doi: 10.11857/j.issn.1674-5124.2016.10.026
    [17]
    成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004

    CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. doi: 10.3969/j.issn.1000-1093.2020.01.004
    [18]
    LI X, LIU Y Z, SUN Y. Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration [J]. Polymers, 2020, 12(6): 1342. doi: 10.3390/polym12061342
    [19]
    YANG K, WU Y Q, HUANG F L. Damage and hotspot formation simulation for impact-shear loaded PBXs using combined microcrack and microvoid model [J]. European Journal of Mechanics-A/Solids, 2020, 80: 103924. doi: 10.1016/j.euromechsol.2019.103924
    [20]
    YANG K, WU Y Q, HUANG F L. Microcrack and microvoid dominated damage behaviors for polymer bonded explosives under different dynamic loading conditions [J]. Mechanics of Materials, 2019, 137: 103130. doi: 10.1016/j.mechmat.2019.103130
    [21]
    DANCYGIER A N. Concrete strength effect on penetration and perforation resistance to impact of non-deforming projectiles [C]//8th International Symposium on Plasticity and Impact Mechanics. Delhi, India, 2003: 826–832.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views(819) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return