Volume 35 Issue 6
Nov 2021
Turn off MathJax
Article Contents
ZHANG Xihuang, LI Jinzhu, WU Haijun, HUANG Fenglei. Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734
Citation: ZHANG Xihuang, LI Jinzhu, WU Haijun, HUANG Fenglei. Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 064105. doi: 10.11858/gywlxb.20210734

Mechanical Behavior and Failure Mechanism of Glass Fiber Reinforced Plastics under Quasi-Static and Dynamic Compressive Loading

doi: 10.11858/gywlxb.20210734
  • Received Date: 08 Mar 2021
  • Rev Recd Date: 25 Mar 2021
  • To study the mechanical properties of glass fiber reinforced plastic composites under static and dynamic loading, compression experiments were conducted in two directions using a materials testing system (MTS) and a split Hopkinson pressure bar (SHPB). The typical damage pattern of the composites was obtained by scanning electron microscopy (SEM). The results show that the material has strong strain rate sensitivity and anisotropy. Delamination damage and interlaminar crush are the factors that caused the in-plane and out-of-plane loading damage, respectively. The microscopic analysis of the fracture shows that the degree of fiber-matrix fragmentation is higher under dynamic loading. The force between the fiber-matrix interface is stronger, which may be one reason for the difference in the dynamic and static mechanical response of the material. A compressive constitutive model with strain-rate and damage effects was developed to accurately describe the dynamic compressive stress-strain behaviors of the composite along the two perpendicular directions.

     

  • loading
  • [1]
    TAN H C, HUANG X, LIU L L, et al. Dynamic compressive behavior of four-step three-dimensional braided composites along three directions [J]. International Journal of Impact Engineering, 2019, 134: 103366. doi: 10.1016/j.ijimpeng.2019.103366
    [2]
    朱文墨, 李刚, 杨小平, 等. 连续纤维增强树脂复合材料纵向压缩强度预测模型的发展及其影响因素 [J]. 复合材料学报, 2020, 37(1): 1–15. doi: 10.13801/j.cnki.fhclxb.20190917.004

    ZHU W M, LI G, YANG X P, et al. Development of prediction model and influencing factors of longitudinal compressive strength for continuous fiber reinforced polymer composites [J]. Acta Materiae Compositae Sinica, 2020, 37(1): 1–15. doi: 10.13801/j.cnki.fhclxb.20190917.004
    [3]
    GRIFFITHS L J, MARTIN D J. A study of the dynamic behaviour of a carbon-fibre composite using the split Hopkinson pressure bar [J]. Journal of Physics D: Applied Physics, 1974, 7(17): 2329–2341. doi: 10.1088/0022-3727/7/17/308
    [4]
    TAY T E, ANG H G, SHIM V P W. An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy [J]. Composite Structures, 1995, 33(4): 201–210. doi: 10.1016/0263-8223(95)00116-6
    [5]
    NAIK N K, KAVALA V R. High strain rate behavior of woven fabric composites under compressive loading [J]. Materials Science and Engineering: A, 2008, 474(1/2): 301–311. doi: 10.1016/j.msea.2007.05.032
    [6]
    KOERBER H, CAMANHO P P. High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in longitudinal compression [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(5): 462–470. doi: 10.1016/j.compositesa.2011.01.002
    [7]
    PLOECKL M, KUHN P, GROSSER J, et al. A dynamic test methodology for analyzing the strain-rate effect on the longitudinal compressive behavior of fiber-reinforced composites [J]. Composite Structures, 2017, 180: 429–438. doi: 10.1016/j.compstruct.2017.08.048
    [8]
    HSIAO H M, DANIEL I M. Strain rate behavior of composite materials [J]. Composites Part B: Engineering, 1998, 29(5): 521–533. doi: 10.1016/S1359-8368(98)00008-0
    [9]
    TARFAOUI M, CHOUKRI S, NEME A. Effect of fibre orientation on mechanical properties of the laminated polymer composites subjected to out-of-plane high strain rate compressive loadings [J]. Composites Science and Technology, 2008, 68(2): 477–485. doi: 10.1016/j.compscitech.2007.06.014
    [10]
    SONG B, CHEN W N, WEERASOORIYA T. Quasi-static and dynamic compressive behaviors of a S-2 glass/SC15 composite [J]. Journal of Composite Materials, 2003, 37(19): 1723–1743. doi: 10.1177/002199803035189
    [11]
    许沭华, 王肖钧, 张刚明, 等. Kevlar纤维增强复合材料动态压缩力学性能实验研究 [J]. 实验力学, 2001, 16(1): 26–33. doi: 10.3969/j.issn.1001-4888.2001.01.005

    XU S H, WANG X J, ZHANG G M, et al. Experimental investigation on the dynamic compression properties of kevlar fiber-rainforced composite laminates [J]. Journal of Experimental Mechanics, 2001, 16(1): 26–33. doi: 10.3969/j.issn.1001-4888.2001.01.005
    [12]
    沈玲燕, 李永池, 王志海, 等. 三维正交机织玻璃纤维/环氧树脂复合材料动态力学性能的实验和理论研究 [J]. 复合材料学报, 2012, 29(4): 157–162. doi: 10.13801/j.cnki.fhclxb.2012.04.026

    SHEN L Y, LI Y C, WANG Z H, et al. Experimental and theoretical research on the dynamic properties of 3D orthogonal woven E-glass fiber/epoxy composites [J]. Acta Materiae Compositae Sinica, 2012, 29(4): 157–162. doi: 10.13801/j.cnki.fhclxb.2012.04.026
    [13]
    HU J X, YIN S, YU T X, et al. Dynamic compressive behavior of woven flax-epoxy-laminated composites [J]. International Journal of Impact Engineering, 2018, 117: 63–74. doi: 10.1016/j.ijimpeng.2018.03.004
    [14]
    CHEN C Y, ZHANG C, LIU C L, et al. Rate-dependent tensile failure behavior of short fiber reinforced PEEK [J]. Composites Part B: Engineering, 2018, 136: 187–196. doi: 10.1016/j.compositesb.2017.10.031
    [15]
    阮班超, 史同亚, 王永刚. E玻璃纤维增强环氧树脂基复合材料轴向拉伸力学性能的应变率效应 [J]. 复合材料学报, 2018, 35(10): 2715–2722. doi: 10.13801/j.cnki.fhclxb.20180209.007

    RUAN B C, SHI T Y, WANG Y G. Influence of strain rate on tensile mechanical behavior of E glass fiber reinforced epoxy resin composites [J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2715–2722. doi: 10.13801/j.cnki.fhclxb.20180209.007
    [16]
    FENG P, CHENG S, BAI Y, et al. Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression [J]. Composite Structures, 2015, 123: 312–324. doi: 10.1016/j.compstruct.2014.12.053
    [17]
    冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论 [J]. 工程力学, 2017, 34(3): 36–46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    FENG P, QIANG H L, YE L P. Discussion and definition on yield points of materials, members and structures [J]. Engineering Mechanics, 2017, 34(3): 36–46. doi: 10.6052/j.issn.1000-4750.2016.03.0192
    [18]
    ARBAOUI J, TARFAOUI M, EL MALKI ALAOUI A. Mechanical behavior and damage kinetics of woven E-glass/vinylester laminate composites under high strain rate dynamic compressive loading: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2016, 87: 44–54. doi: 10.1016/j.ijimpeng.2015.06.026
    [19]
    MOSTAPHA T. Experimental investigation of dynamic compression and damage kinetics of glass/epoxy laminated composites under high strain rate compression [M]//ATTAF B. Advances in Composite Materials-Ecodesign and Analysis. Rijeka: IntechOpen, 2011.
    [20]
    王严培, 姜启帆, 李玉龙. 基于Hopkinson杆试验技术的PA-GF50复合材料动态力学行为 [J]. 兵工学报, 2018, 39(1): 161–169. doi: 10.3969/j.issn.1000-1093.2018.01.018

    WANG Y P, JIANG Q F, LI Y L. Dynamic mechanical behaviors of a short-glass-fiber reinforced polyamide in Hopkinson bar test [J]. Acta Armamentarii, 2018, 39(1): 161–169. doi: 10.3969/j.issn.1000-1093.2018.01.018
    [21]
    NAIK N K, SHANKAR P J, KAVALA V R, et al. High strain rate mechanical behavior of epoxy under compressive loading: experimental and modeling studies [J]. Materials Science and Engineering: A, 2011, 528(3): 846–854. doi: 10.1016/j.msea.2010.10.099
    [22]
    REIS V L, OPELT C V, CÂNDIDO G M, et al. Effect of fiber orientation on the compressive response of plain weave carbon fiber/epoxy composites submitted to high strain rates [J]. Composite Structures, 2018, 203: 952–959. doi: 10.1016/j.compstruct.2018.06.016
    [23]
    RAVIKUMAR G, POTHNIS J R, JOSHI M, et al. Analytical and experimental studies on mechanical behavior of composites under high strain rate compressive loading [J]. Materials & Design, 2013, 44: 246–255. doi: 10.1016/j.matdes.2012.07.040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(748) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return