Volume 35 Issue 1
Jan 2021
Turn off MathJax
Article Contents
LIU Pengfei, GUO Jiaqi, FAN Junqi, MA Zhaowei. Mechanical Properties and Acoustic Emission Characteristics of Granite under Different Unloading Rates of Confining Pressures[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014102. doi: 10.11858/gywlxb.20200608
Citation: LIU Pengfei, GUO Jiaqi, FAN Junqi, MA Zhaowei. Mechanical Properties and Acoustic Emission Characteristics of Granite under Different Unloading Rates of Confining Pressures[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014102. doi: 10.11858/gywlxb.20200608

Mechanical Properties and Acoustic Emission Characteristics of Granite under Different Unloading Rates of Confining Pressures

doi: 10.11858/gywlxb.20200608
  • Received Date: 31 Aug 2020
  • Rev Recd Date: 12 Sep 2020
  • In order to study the mechanical properties of granite under different unloading confining pressure rates, tests for the granite unloading confining pressure stress path under constant axial pressure were conducted via RMT-150B rock mechanics test system. The results show that: under the same initial confining pressure, the ductility of rock sample gets decreased with the increase of unloading confining pressure rate, which is characterized by brittle failure. The higher the unloading confining pressure rate is, the greater the strain rate is in the duration of confining pressure unloading, but the total deformation keeps small. Under the same unloading rate, the higher the initial confining pressure is, the greater the strain rate as well as the total deformation is. Then using Mogi-Coulomb intensity criterion to fit the test results, it is concluded that the unloading confining pressure rate degrades the cohesion of granite and strengthens the internal friction angle of rock; the smaller the unloading confining pressure rate is, the longer the active period of ringing count is, indicating a slow but complete development of the internal damage in granite samples under low confining pressure release rate.

     

  • loading
  • [1]
    冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究 [J]. 岩石力学与工程学报, 2019, 38(4): 649–673. doi: 10.13722/j.cnki.jrme.2019.0103

    FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673. doi: 10.13722/j.cnki.jrme.2019.0103
    [2]
    尤明庆. 岩石的力学性质 [M]. 北京: 地质出版社, 2007.

    YOU M Q. Mechanical properties of rocks [M]. Beijing: Geological Publishing House, 2007.
    [3]
    刘之喜. 高围压下砂岩循环加-卸载损伤本构及损伤阈值 [J]. 高压物理学报, 2020, 34(4): 044203. doi: 10.11858/gywlxb.20190809

    LIU Z X. Damage constitutive of cyclic loading and damage threshold of rock under high confining pressure [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044203. doi: 10.11858/gywlxb.20190809
    [4]
    谢红强, 何江达, 徐进. 岩石加卸载变形特性及力学参数试验研究 [J]. 岩土工程学报, 2003, 25(3): 336–338. doi: 10.3321/j.issn:1000-4548.2003.03.018

    XIE H Q, HE J D, XU J. Deformation characterslics of rock under loading and unloading conditions and experimental study of mechanical parameters [J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 336–338. doi: 10.3321/j.issn:1000-4548.2003.03.018
    [5]
    王光勇, 余锐, 马东方, 等. 饱水细砂岩动态抗拉与抗压强度试验对比研究 [J]. 高压物理学报, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857

    WANG G Y, YU R, MA D F, et al. Comparative study on dynamic tensile and compressivestrength of the saturated fine sandstone [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857
    [6]
    MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 643–659. doi: 10.1016/0148-9062(94)90005-1
    [7]
    邱士利, 冯夏庭, 张传庆, 等. 不同卸围压速率下深埋大理岩卸荷力学特性试验研究 [J]. 岩石力学与工程学报, 2010, 29(9): 1807–1817.

    QIU S L, FENG X T, ZHANG C Q, et al. Experimental research on mechanical properties of deep-buried marble under different unloading rates of confining pressures [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1807–1817.
    [8]
    SWANSSON S R, BROWN W S. An observation of loading path independence of fracture in rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 277–278. doi: 10.1016/0148-9062(71)90023-4
    [9]
    HUANG X, LIU Q S, LIU B, et al. Experimental study on the dilatancy and fracturing behavior of soft rock under unloading conditions [J]. International Journal of Civil Engineering, 2017, 15(6): 921–948. doi: 10.1007/s40999-016-0144-9
    [10]
    黄润秋, 黄达. 卸荷条件下花岗岩力学特性试验研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2205–2213. doi: 10.3321/j.issn:1000-6915.2008.11.005

    HUANG R Q, HUANG D. Experimental research on mechanical properties of granites under unloading condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2205–2213. doi: 10.3321/j.issn:1000-6915.2008.11.005
    [11]
    张凯, 周辉, 潘鹏志, 等. 不同卸荷速率下岩石强度特性研究 [J]. 岩土力学, 2010, 31(7): 2072–2078. doi: 10.3969/j.issn.1000-7598.2010.07.009

    ZHANG K, ZHOU H, PAN P Z, et al. Characteristics of strength of rocks under different unloading rates [J]. Rock and Soil Mechanics, 2010, 31(7): 2072–2078. doi: 10.3969/j.issn.1000-7598.2010.07.009
    [12]
    LI J Z, LIN F, LIU H F, et al. Triaxial experimental study on changes in the mechanical properties of rocks under different rates of confining pressures unloading [J]. Soil Mechanics and Foundation Engineering, 2019, 56(4): 246–252. doi: 10.1007/s11204-019-09598-3
    [13]
    国家质量技术监督局, 中华人民共和国建设部. 工程岩体试验方法标准: GB/T50266—1999 [S]. 北京: 中国标准出版社, 1999.

    State Bureau of Quality and Technical Supervision, Ministry of Construction of the People's Republic of China.Standard for tests method of engineering rock massas : GB/T50266—1999 [S]. Beijing: Standards Press of China, 1999.
    [14]
    江权, 冯夏庭, 李邵军, 等. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化-抑制法及其应用 [J]. 岩石力学与工程学报, 2019, 38(6): 1081–1101. doi: 10.13722/j.cnki.jrme.2018.1147

    JIANG Q, FENG X T, LI S J, et al. Cracking-restraint design method for large underground caverns with hard rock under high geostress condition and its practical application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1081–1101. doi: 10.13722/j.cnki.jrme.2018.1147
    [15]
    郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究 [J]. 岩石力学与工程学报, 2014, 33(2): 296–308.

    GUO J Q, LIU X L, QIAO C S. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296–308.
    [16]
    AL-AJMI A M, ZIMMERMAN R W. Relation between the Mogi and the Coulomb failure criteria [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 431–439. doi: 10.1016/j.ijrmms.2004.11.004
    [17]
    罗吉安, 刘丰茂, 刘之喜, 等. 基于八面体理论的岩石循环加-卸载本构模型及修正 [J]. 高压物理学报, 2020, 34(2): 024202. doi: 10.11858/gywlxb.20190797

    LUO J A, LIU F M, LIU Z X, et al. Study and correction of cyclic loading-unloading constitutive model of rock based on octahedral theory [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024202. doi: 10.11858/gywlxb.20190797
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(5930) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return