Volume 34 Issue 4
Jul 2020
Turn off MathJax
Article Contents
ZHAO Huifang, TAN Dayong, JIANG Feng, XIE Yafei, JIANG Changguo, LUO Xingli, XIAO Wansheng. Raman Evidences of Chemical Reaction of Re-H2O System at High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518
Citation: ZHAO Huifang, TAN Dayong, JIANG Feng, XIE Yafei, JIANG Changguo, LUO Xingli, XIAO Wansheng. Raman Evidences of Chemical Reaction of Re-H2O System at High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518

Raman Evidences of Chemical Reaction of Re-H2O System at High Pressure and High Temperature

doi: 10.11858/gywlxb.20200518
  • Received Date: 02 Mar 2020
  • Rev Recd Date: 10 Mar 2020
  • Rhenium tablet is a frequently used gasket material at the ultra-high pressures in Diamond anvil cell (DAC) experiment. Water in deep Earth is the link between material exchange and energy circulation in the Earth’s interior. It is greatly scientific and technical significance on the study of chemical reaction of Re-H2O system at high pressures and temperatures. Microscopic observations and Raman measurements show that the Re-H2O system takes place the redox reaction ${2{{\rm{H}}_2}{\rm{O}} + {\rm{Re}}\;\;\;\begin{matrix}{40.5\;{\rm{GPa}}} \\\hline \hline{1\;800\;{\rm{K}}}\\\end{matrix}\;\;\;{\rm{Re}}{{\rm{O}}_2} + 4{\rm{H}}}$ under the conditions of high pressures and high temperatures, and produce rhenium oxide (β-ReO2) with Re4+ and atomic hydrogen (H). Observed fourteen characteristic Raman peaks of oxidation product ReO2 have a continuous unequal shift to lower Raman frequencies with the release of pressure. Reduction product H does not further take place interreaction with the water molecules, rhenium metals and their reaction products β-ReO2 and atomic H under high pressures. But the hydrogen molecules are formed when the pressure is released to near atmospheric pressure. The chemical reaction of Re-H2O system under the conditions of high-pressure and temperature reveals that water (hydroxyl) can decompose to produce atomic hydrogen in the Earth’s interior with the high pressure, high temperature and reductive material. This discovery not only provides a new experimental evidence for the conversion of water to hydrogen in deep Earth, but also gives important basis for exploring the possible geochemical behaviors of water in the Earth’s interior.

     

  • loading
  • [1]
    MARTIN R F, DONNAY G. Hydroxyl in the mantle [J]. American Mineralogist, 1972, 57(3/4): 554570.
    [2]
    HIRSCHMANN M M. Water, melting, and the deep Earth H2O cycle [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 629–653. doi: 10.1146/annurev.earth.34.031405.125211
    [3]
    GREEN D H, HIBBERSON W O, KOVÁCS I, et al. Water and its influence on the lithosphere–asthenosphere boundary [J]. Nature, 2010, 467(7314): 448–451. doi: 10.1038/nature09369
    [4]
    HIRSCHMANN M M, AUBAUD C, WITHERS A C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle [J]. Earth and Planetary Science Letters, 2005, 236(1/2): 167–181. doi: 10.1016/j.jpgl.2005.04.022
    [5]
    OHTANI E. Water in the mantle [J]. Elements, 2005, 1(1): 25–30. doi: 10.2113/gselements.1.1.25
    [6]
    OHTANI E. The role of water in Earth's mantle [J]. National Science Review, 2020, 7(1): 224–232. doi: 10.1093/nsr/nwz071
    [7]
    夏群科, 杨晓志, 郝艳涛, 等. 深部地球中水的分布和循环 [J]. 地学前缘, 2007, 14(2): 10–23. doi: 10.3321/j.issn:1005-2321.2007.02.002

    XIA Q K, YANG X Z, HAO Y T, et al. Water: distribution and circulation in the deep Earth [J]. Earth Science Frontiers, 2007, 14(2): 10–23. doi: 10.3321/j.issn:1005-2321.2007.02.002
    [8]
    YANG X, KEPPLER H, LI Y. Molecular hydrogen in mantle minerals [J]. Geochemical Perspectives Letters, 2016, 2(2): 160–168. doi: 10.7185/geochemlet.1616
    [9]
    HU Q Y, KIM D Y, LIU J, et al. Dehydrogenation of goethite in Earth’s deep lower mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 1498–1501. doi: 10.1073/pnas.1620644114
    [10]
    HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
    [11]
    ZHANG L, YUAN H S, MENG Y, et al. Discovery of a hexagonal ultradense hydrous phase in (Fe, Al)OOH [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2908–2911. doi: 10.1073/pnas.1720510115
    [12]
    OHTANI E, HIRAO N, KONDO T, et al. Iron-water reaction at high pressure and temperature, and hydrogen transport into the core [J]. Physics and Chemistry of Minerals, 2005, 32(1): 77–82. doi: 10.1007/s00269-004-0443-6
    [13]
    VOHRA Y K, DUCLOS S J, RUOFF A L. High-pressure x-ray diffraction studies on rhenium up to 216 GPa (2.16 Mbar) [J]. Physical Review B, 1987, 36(18): 9790–9792. doi: 10.1103/PhysRevB.36.9790
    [14]
    BONDARENKO Y A, KABLOV E N, SUROVA V A, et al. Effect of high-gradient directed crystallization on the structure and properties of rhenium-bearing single-crystal alloy [J]. Metal Science and Heat Treatment, 2006, 48(7/8): 360–363. doi: 10.1007/s11041-006-0099-6
    [15]
    NAUMOV A V. Rhythms of rhenium [J]. Russian Journal of Non-Ferrous Metals, 2007, 48(6): 418–423. doi: 10.3103/S1067821207060089
    [16]
    SANTAMARÍA-PÉREZ D, MCGUIRE C, MAKHLUF A, et al. Exploring the chemical reactivity between carbon dioxide and three transition metals (Au, Pt, and Re) at high-pressure, high-temperature conditions [J]. Inorganic Chemistry, 2016, 55(20): 10793–10799. doi: 10.1021/acs.inorgchem.6b01858
    [17]
    CHELLAPPA R S, SOMAYAZULU M, HEMLEY R J. Rhenium reactivity in H2O-O2 supercritical mixtures at high pressures [J]. High Pressure Research, 2009, 29(4): 792–799. doi: 10.1080/08957950903286450
    [18]
    MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar [J]. Journal of Applied Physics, 1978, 49(6): 3276–3283. doi: 10.1063/1.325277
    [19]
    GONCHAROV A F, GREGORYANZ E, STRUZHKIN V V, et al. Raman scattering of metals to very high pressures [EB/OL]. arXiv: cond-mat/0112404. (2001-12-20)[2020-03-01]. http://arxiv.org/abs/cond-mat/0112404.
    [20]
    PRUZAN P, CHERVIN J C, GAUTHIER M. Raman spectroscopy investigation of ice Ⅶ and deuterated ice Ⅶ to 40 GPa: disorder in ice Ⅶ [J]. EPL (Europhysics Letters), 1990, 13(1): 81–87. doi: 10.1209/0295-5075/13/1/014
    [21]
    WALRAFEN G E, ABEBE M, MAUER F A, et al. Raman and x-ray investigations of ice Ⅶ to 36.0 GPa [J]. The Journal of Chemical Physics, 1982, 77(4): 2166–2174. doi: 10.1063/1.444023
    [22]
    CAREY D M, KORENOWSKI G M. Measurement of the Raman spectrum of liquid water [J]. The Journal of Chemical Physics, 1998, 108(7): 2669–2675. doi: 10.1063/1.475659
    [23]
    DUNAEVA A N, ANTSYSHKIN D V, KUSKOV O L. Phase diagram of H2O: thermodynamic functions of the phase transitions of high-pressure ices [J]. Solar System Research, 2010, 44(3): 202–222. doi: 10.1134/S0038094610030044
    [24]
    HSIEH W P, CHIEN Y H. High pressure Raman spectroscopy of H2O-CH3OH mixtures [J]. Scientific Reports, 2015, 5(1): 8532. doi: 10.1038/srep08532
    [25]
    OTTO J W, VASSILIOU J K, PORTER R F, et al. Raman study of AgReO4 in the scheelite structure under pressure [J]. Physical Review B, 1991, 44(17): 9223–9227. doi: 10.1103/PhysRevB.44.9223
    [26]
    KLUG D D, SIM P G, BROWN R J C. Raman spectrum of NH4ReO4 at high pressure [J]. Journal of Raman Spectroscopy, 1982, 13(1): 53–55. doi: 10.1002/jrs.1250130110
    [27]
    MACHIDA S I, HIRAI H, KAWAMURA T, et al. Raman spectra for hydrogen hydrate under high pressure: intermolecular interactions in filled ice Ic structure [J]. Journal of Physics and Chemistry of Solids, 2010, 71(9): 1324–1328. doi: 10.1016/j.jpcs.2010.05.015
    [28]
    MACHIDA S, HIRAI H, KAWAMURA T, et al. Structural changes and intermolecular interactions of filled ice ic structure for hydrogen hydrate under high pressure [J]. Journal of Physics: Conference Series, 2010, 215(1): 012060. doi: 10.1088/1742-6596/215/1/012060
    [29]
    STOICHEFF B P. High resolution Raman spectroscopy of gases: IX. spectra of H2, HD, and D2 [J]. Canadian Journal of Physics, 1957, 35(6): 730–741. doi: 10.1139/p57-079
    [30]
    SHARMA S K, MAO H K, BELL P M. Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature [J]. Physical Review Letters, 1980, 44(13): 886–888. doi: 10.1103/PhysRevLett.44.886
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(8175) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return