Volume 34 Issue 1
Jan 2020
Turn off MathJax
Article Contents
LI Xin, YAN Ping, TAN Bo, QIN Yiping. Three-Phase Coupling Numerical Simulation of Underwater Penetration of Supercavitating Projectile into Target Plate[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015103. doi: 10.11858/gywlxb.20190798
Citation: LI Xin, YAN Ping, TAN Bo, QIN Yiping. Three-Phase Coupling Numerical Simulation of Underwater Penetration of Supercavitating Projectile into Target Plate[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015103. doi: 10.11858/gywlxb.20190798

Three-Phase Coupling Numerical Simulation of Underwater Penetration of Supercavitating Projectile into Target Plate

doi: 10.11858/gywlxb.20190798
  • Received Date: 27 Jun 2019
  • Rev Recd Date: 11 Jul 2019
  • Publish Date: 25 Jan 2020
  • The essence of supercavitating projectile penetration is the dynamic response of a special underwater structure subjected to high-speed impact load. In this paper, the damage effect of 12.7 mm supercavitating projectile penetrating typical underwater target shell is studied. Based on LS-DYNA finite element analysis software, the equivalent model of supercavitating projectile penetrating into curved surface target vertically in water environment is established. The combined damage effect of kinetic energy penetration and bubble collapse on target plate during penetration is simulated, and the stress variation and structural deformation law of target plate at different stages are obtained. The results show that the peak pressure of water medium on the head surface reaches 768 N when the velocity of projectile is 200 m/s before penetrating the target, and the surface of the target exhibits obvious concave deformation; with projectile kinetic energy penetration and bubble collapse impact during penetrating process, the impact effect of water medium is less than 2% of that by kinetic energy penetration. After penetrating the target, a water jet with a peak velocity of 42 m/s is formed on the front of the target and further acts on the break. The overall bending deformation of the target plate occurs. In the range of 200 m/s to 300 m/s, the bending deformation decreases with the increase of projectile impact velocity. Ductile perforation occurs locally on the target plate, and the projectile has better perforation effect in water environment. The change of projectile velocity has little effect on the size of the perforation.

     

  • loading
  • [1]
    张宇文, 袁绪龙, 邓飞. 超空泡航行体流体动力学 [M]. 北京: 国防工业出版社, 2014: 17–32.

    ZHANG Y W, YUAN X L, DENG F. Hydrodynamics of supercavitating vehicle [M]. Beijing: National Defense Industry Press, 2014: 17–32.
    [2]
    姚忠, 王瑞, 徐保成. 超空泡射弹火炮武器应用现状研究 [J]. 火炮发射与控制学报, 2017, 38(3): 92–96.

    YAO Z, WANG R, XU B C. Research on application status of supercavitating projectile gun weapon [J]. Journal of Artillery Launch and Control, 2017, 38(3): 92–96.
    [3]
    施红辉, 周东辉, 孙亚亚, 等. 水下连发射弹的超空泡流动特性研究 [J]. 兵工学报, 2018, 39(11): 2228–2234. doi: 10.3969/j.issn.1000-1093.2018.11.017

    SHI H H, ZHOU D H, SUN Y Y, et al. Study on supercavity flow characteristics of underwater continuous launch projectile [J]. Journal of China Ordnance, 2018, 39(11): 2228–2234. doi: 10.3969/j.issn.1000-1093.2018.11.017
    [4]
    YAN P, LI X. Numerical simulation of underwater supercavitating projectile penetrating structure equivalent of torpedo [C]//CHANG G F, CLIVE W, BAO M L. 2018 International Conference on Defence Technology Proceedings. Beijing: The Publishing House of Ordnance Industry, 2018: 629–633.
    [5]
    邓环宇. 高速射弹侵彻行为及跳弹机理数值计算 [D]. 哈尔滨: 哈尔滨工业大学, 2016: 23–35.

    DENG H Y. Numerical calculation of penetration behavior and jump mechanism of high speed projectiles [D]. Harbin: Harbin Industrial University, 2016: 23–35.
    [6]
    章启成. 水下高速运动体运动特性分析与试验研究 [D]. 南京: 南京理工大学, 2011: 31–40.

    ZHANG Q C. Analysis and experimental study on motion characteristics of underwater high-speed moving body [D]. Nanjing: Nanjing University of Science and Technology, 2011: 31–40.
    [7]
    熊天红. 水下高速射弹超空泡减阻技术研究 [D]. 南京: 南京理工大学, 2005: 95–108.

    XIONG T H. Research on super-cavitation drag reduction technology of underwater high speed projectile [D]. Nanjing: Nanjing University of Science and Technology, 2005: 95–108.
    [8]
    潘森森, 彭晓星. 空化机理 [M]. 北京: 国防工业出版社, 2013: 122–124.

    PAN S S, PENG X X. Physical mechanism of cavitation [M]. Beijing: National Defense Industry Press, 2013: 122–124.
    [9]
    康德, 严平. 基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟 [J]. 爆炸与冲击, 2014, 34(5): 534–538. doi: 10.11883/1001-1455(2014)05-0534-05

    KANG D, YAN P. Fluid-solid coupling numerical simulation of motion characteristics of high-speed fragments in water based on LS-DYNA [J]. Explosion and Shock Waves, 2014, 34(5): 534–538. doi: 10.11883/1001-1455(2014)05-0534-05
    [10]
    钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984: 289–290.

    QIAN W C. Armor piercing mechanics [M]. Beijing: National Defense Industry Press, 1984: 289–290.
    [11]
    CHEN X W, LI Q M. Perforation of a thick plate by rigid projectiles [J]. International Journal of Impact Engineering, 2003, 28(7): 743–759. doi: 10.1016/S0734-743X(02)00152-5
    [12]
    黄超, 汪斌, 张远平, 等. 柱形装药自由场水中爆炸气泡的射流特性 [J]. 爆炸与冲击, 2011, 31(3): 263–267. doi: 10.11883/1001-1455(2011)03-0263-05

    HUANG C, WANG B, ZHANG Y P, et al. Jet characteristics of explosive bubbles in free field of cylindrical charge [J]. Explosion and Shock Waves, 2011, 31(3): 263–267. doi: 10.11883/1001-1455(2011)03-0263-05
    [13]
    唐一华, 权晓波, 谷立祥, 等. 水下垂直发射航行体空泡流 [M]. 北京: 中国宇航出版社, 2017: 76–111.

    TANG Y H, QUAN X B, GU L X, et al. Cavity flow of vertical underwater launched vehicle [M]. Beijing: China Aerospace Publishing House, 2017: 76–111.
    [14]
    王元博. 纤维增强层合材料的抗弹性能和破坏机理研究 [D]. 合肥: 中国科学技术大学, 2006: 47–51.

    WANG Y B. Study on bubble dynamic characteristics and jet impact damage of cylindrical charge [D]. Hefei: China University of Science and Technology, 2006: 47–51.
    [15]
    FORRESTAL M J, LUK V K. Perforation of aluminum armor plates with conical-nose projectiles [J]. Mechanics of Materials, 1990, 10(1): 97–105.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views(7705) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return