Volume 34 Issue 1
Jan 2020
Turn off MathJax
Article Contents
XIA Binghan, WANG Jinxiang, ZHOU Nan, CHEN Xingwang, LU Fujia. Blast Wave and Time Sequence of Prefabricated Fragments for Scaled Warhead with Cylindrical Charge[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015101. doi: 10.11858/gywlxb.20190780
Citation: XIA Binghan, WANG Jinxiang, ZHOU Nan, CHEN Xingwang, LU Fujia. Blast Wave and Time Sequence of Prefabricated Fragments for Scaled Warhead with Cylindrical Charge[J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015101. doi: 10.11858/gywlxb.20190780

Blast Wave and Time Sequence of Prefabricated Fragments for Scaled Warhead with Cylindrical Charge

doi: 10.11858/gywlxb.20190780
  • Received Date: 17 May 2019
  • Rev Recd Date: 28 May 2019
  • In order to explore the influence of the scale effects on the timing of fragmentation and shock wave, the key parameters affecting the location of fragmentation and shock wave are determined by the dimensionless analysis and explosion theory for the prefabricated fragment warhead. This paper proposes a method to predict the timing relationship of the prototype warhead fragmentation and blast wave by the scale ratio warhead, and establishes the model of the warhead under different scale ratios. The numerical simulation is carried out with ANSYS/LS-DYNA finite element software. Based on the theoretical and numerical results, we analyze the scale effects of the warhead on the timing of shock waves and fragmentation. The results show that the ratio of the encounter position of fragments and shock waves produced by the scaled model and the prototype model depends on the mass ratio of the two models. Without considering the velocity attenuation of fragments, the ratio of the encounter position in two models is equal to the 0.33 power of the mass ratio. Due to the effects of fragmentation velocity attenuation, the method is applicable to models with a mass reduction ratio of not less than 0.2.

     

  • loading
  • [1]
    HU W, CHEN Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM [J]. International Journal of Impact Engineering, 2006, 32(12): 2066–2096. doi: 10.1016/j.ijimpeng.2005.05.004
    [2]
    LEPPÄNEN J. Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension [J]. International Journal of Impact Engineering, 2006, 32(11): 1828–1841. doi: 10.1016/j.ijimpeng.2005.06.005
    [3]
    NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. doi: 10.1016/j.ijimpeng.2009.02.008
    [4]
    LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete [J]. International Journal of Impact Engineering, 2005, 31(7): 843–860. doi: 10.1016/j.ijimpeng.2004.04.012
    [5]
    张成亮, 朱锡, 侯海量, 等. 爆炸冲击波与高速破片对夹层结构的联合毁伤效应试验研究 [J]. 振动与冲击, 2014, 33(15): 184–188.

    ZHANG C L, ZHU X, HOU H L, et al. Tests for combined damage effect of blast waves and high-velocity fragments on composite sandwich plates [J]. Journal of Vibration and Shock, 2014, 33(15): 184–188.
    [6]
    李茂, 朱锡, 侯海量, 等. 冲击波和高速破片对固支方板的联合作用数值模拟 [J]. 中国舰船研究, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009

    LI M, ZHU X, HOU H L, et al. Numerical simulation of steel plates subjected to the impact of both impact waves and fragments [J]. Chinese Journal of Ship Research, 2015, 10(6): 60–67. doi: 10.3969/j.issn.1673-3185.2015.06.009
    [7]
    侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性 [J]. 爆炸与冲击, 2015, 35(1): 116–123. doi: 10.11883/1001-1455(2015)01-0116-08

    HOU H L, ZHANG C L, LI M, et al. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments [J]. Explosion and Shock Waves, 2015, 35(1): 116–123. doi: 10.11883/1001-1455(2015)01-0116-08
    [8]
    LLOYD R. Conventional warhead systems physics and engineering design [M]. Reston: American Institute of Aeronautics and Astronautics, 1998.
    [9]
    梁为民, 张晓忠, 梁仕发, 等. 结构内爆炸破片与冲击波运动规律试验研究 [J]. 兵工学报, 2009(Suppl 2): 223–227.

    LIANG W M, ZHANG X Z, LIANG S F, et al. Experimental research on motion law of fragment and shock wave under the condition of internal explosion [J]. Acta Armamentarii, 2009(Suppl 2): 223–227.
    [10]
    安振涛, 王超, 甄建伟, 等. 常规弹药爆炸破片和冲击波作用规律理论研究 [J]. 爆破, 2012, 29(1): 15–18. doi: 10.3963/j.issn.1001-487X.2012.01.004

    AN Z T, WANG C, ZHEN J W, et al. Theoretical research on action law of fragment and shock wave of traditional ammunition explosion [J]. Blasting, 2012, 29(1): 15–18. doi: 10.3963/j.issn.1001-487X.2012.01.004
    [11]
    郑红伟, 陈长海, 侯海量, 等. 破片尺寸对空爆冲击波及破片传播过程的影响仿真分析 [J]. 中国舰船研究, 2017, 12(6): 73–80. doi: 10.3969/j.issn.1673-3185.2017.06.011

    ZHENG H W, CHEN C H, HOU H L, et al. Simulation analysis of effects of single fragment size on air-blast wave and fragment propagation [J]. Chinese Journal of Ship Research, 2017, 12(6): 73–80. doi: 10.3969/j.issn.1673-3185.2017.06.011
    [12]
    史志鑫, 尹建平, 王志军. 预制破片的形状对破片飞散性能影响的数值模拟研究 [J]. 兵器装备工程学报, 2017(12): 31–35. doi: 10.11809/scbgxb2017.12.008

    SHI Z X, YIN J P, WANG Z J. Numerical simulation of the influence of prefabricated fragments shape on fragment scattering performance [J]. Journal of Ordnance Equipment Engineering, 2017(12): 31–35. doi: 10.11809/scbgxb2017.12.008
    [13]
    曾首义, 蒋志刚, 陈斌, 等. 冲击波与破片共同作用探讨 [C]//中国土木工程学会防护工程分会理事会暨学术会议, 2006: 263–267.

    ZENG S Y, JIANG Z G, CHEN B, et al. Discussion on the interaction between shock wave and fragmentation [C]//China Civil Engineering Society Protection Engineering Branch Council and Academic Conference, 2006: 263–267.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views(9610) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return