Volume 33 Issue 4
Jul 2019
Turn off MathJax
Article Contents
MA Qiqi, XIONG Xun, ZHENG Yuxuan, ZHOU Fenghua. Discrete Element Simulations of Dynamic Compression Failure of Inorganic Glass in SHPB Tests[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044101. doi: 10.11858/gywlxb.20190719
Citation: MA Qiqi, XIONG Xun, ZHENG Yuxuan, ZHOU Fenghua. Discrete Element Simulations of Dynamic Compression Failure of Inorganic Glass in SHPB Tests[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044101. doi: 10.11858/gywlxb.20190719

Discrete Element Simulations of Dynamic Compression Failure of Inorganic Glass in SHPB Tests

doi: 10.11858/gywlxb.20190719
  • Received Date: 22 Jan 2019
  • Rev Recd Date: 07 Mar 2019
  • Publish Date: 25 Apr 2019
  • Based on the discrete element algorithm (DEM), a numerical split Hopkinson pressure bar (SHPB) platform is established by the mean of particle flow code software (PFC2D), and the feasibility of the system has been verified. The failure mode and the dynamic compressive strength of an inorganic glass specimen at different strain rates are investigated. The numerical simulation shows that the inorganic glass exhibits typical brittle characteristics during dynamic compression, and its compressive strength is significantly affected by the strain rate. The Young’s modulus, however, is strain rate insensitive. The failure mode of the specimen is affected by the boundary friction as well as the Poisson ratio. In the case of frictional contact, the initial micro-cracks within the specimen are distributed in a triangular zone due to the combined effect of longitudinal pressure and frictional force. With the increase of the longitudinal stress, the transverse tensile stress creates the longitudinal cracks, resulting in the axial splitting. The failure mode in the case of frictionless contact differs from the frictional case, in which no triangular crack zone exists. Moreover, the value of Poisson ratio affects the failure mode as it results in the transverse tensile stress during dynamic loading. Numerical simulations of dynamic Brazilian compression are also conducted to support future experimental works. It shows that Brazilian disk starts failure at the center in the moderate strain rate and the macroscopic splitting tensile strength is strain rate dependent.

     

  • loading
  • [1]
    ZHANG X, ZOU Y, HAO H, et al. Laboratory test on dynamic material properties of annealed float glass [J]. International Journal of Protective Structures, 2012, 3(4): 407–430. doi: 10.1260/2041-4196.3.4.407
    [2]
    PERONI M, SOLOMOS G, PIZZINATO V, et al. Experimental investigation of high strain-rate behaviour of glass [C]// Applied Mechanics and Materials. Trans Tech Publications, 2011, 82: 63–68.
    [3]
    王振, 张超, 王银茂, 等. 飞机风挡无机玻璃在不同应变率下的力学行为 [J]. 爆炸与冲击, 2018, 38(2): 295–301.

    WANG Z, ZHANG C, WANG Y M, et al. Mechanical behaviours of aeronautical inorganic glass at different strain rates [J]. Explosion and Shock Waves, 2018, 38(2): 295–301.
    [4]
    NIE X, CHEN W W, WERESZCZAK A A, et al. Effect of loading rate and surface conditions on the flexural strength of borosilicate glass [J]. Journal of the American Ceramic Society, 2009, 92(6): 1287–1295. doi: 10.1111/jace.2009.92.issue-6
    [5]
    NIE X, CHEN W W. Rate and surface treatment effect on the strength of boro-glass [C]//11th International Congress and Exhibition on Experimental and Applied Mechanics. Orlando, Florida: Society for Experimental Mechanics, 2008: 122–123.
    [6]
    NIE X, CHEN W W, SUN X, et al. Dynamic failure of borosilicate glass under compression/shear loading experiments [J]. Journal of the American Ceramic Society, 2007, 90(8): 2556–2562. doi: 10.1111/jace.2007.90.issue-8
    [7]
    ZHANG X, HAO H, MA G. Dynamic material model of annealed soda-lime glass [J]. International Journal of Impact Engineering, 2015, 77: 108–119. doi: 10.1016/j.ijimpeng.2014.11.016
    [8]
    SUN X, LIU W, CHEN W, et al. Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading [J]. International Journal of Impact Engineering, 2009, 36(2): 226–234. doi: 10.1016/j.ijimpeng.2008.01.014
    [9]
    臧孟炎, 李军, 雷周. 基于DEM的两层结构夹层玻璃冲击破坏特性研究 [J]. 科学技术与工程, 2009, 9(3): 549–553. doi: 10.3969/j.issn.1671-1815.2009.03.005

    ZANG M Y, LI J, LEI Z. Study on impact fracture behavior of Bi-layer laminated glass based on DEM [J]. Science Technology and Engineering, 2009, 9(3): 549–553. doi: 10.3969/j.issn.1671-1815.2009.03.005
    [10]
    臧孟炎, 雷周, 尾田十八. 汽车玻璃的静力学特性和冲击破坏现象 [J]. 机械工程学报, 2009, 45(2): 268–272.

    ZANG M Y, LEI Z, ODA J. Static characteristic and impact fracture behavior of automobile glass [J]. Journal of Mechanical Engineering, 2009, 45(2): 268–272.
    [11]
    CUNDALL P A. A computer model for simulating progressive, large-scale movement in blocky rock system [C]//Proceedings of the International Symposium on Rock Mechanics, 1971: 129–136.
    [12]
    POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
    [13]
    CHEN W W, SONG B. Split Hopkinson (Kolsky) bar: design, testing and applications [M]. New York: Springer Science & Business Media, 2011: 37–49.
    [14]
    LI X, ZOU Y, ZHOU Z. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1693–1709. doi: 10.1007/s00603-013-0484-6
    [15]
    熊迅, 李天密, 马棋棋, 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟 [J]. 力学学报, 2018, 50(3): 622–632.

    XIONG X, LI T M, MA Q Q, et al. Discrete element simulations of the high velocity expansion and fragmentation of quartz glass rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622–632.
    [16]
    王玉芬, 刘连城. 石英玻璃 [M]. 北京: 化学工业出版社, 2007.

    WANG Y F, LIU L C. Quartz glass [M]. Beijing: Chemical Industry Press, 2007.
    [17]
    王承遇, 卢琪, 陶瑛. 玻璃的脆性(一) [J]. 玻璃与搪瓷, 2011, 39(6): 37–43. doi: 10.3969/j.issn.1000-2871.2011.06.009

    WANG C Y, LU Q, TAO Y. Brittleness of glass [J]. Glass & Enamel, 2011, 39(6): 37–43. doi: 10.3969/j.issn.1000-2871.2011.06.009
    [18]
    宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率 [J]. 爆炸与冲击, 2005, 5(3): 207–216. doi: 10.3321/j.issn:1001-1455.2005.03.003

    SONG L, HU S S. Stress uniformity and constant strain rate in SHPB test [J]. Explosion and Shock Waves, 2005, 5(3): 207–216. doi: 10.3321/j.issn:1001-1455.2005.03.003
    [19]
    邓志方, 黄西成, 谢若泽. SHPB实验入射波形分析[C]//中国计算力学大会, 2010.

    DENG Z F, HUANG X C, XIE R Z. Analysis of incident wave in SHPB experiments [C]//Chinese Conference on Computational Mechanics, 2010.
    [20]
    陶俊林, 田常津, 陈裕泽, 等. SHPB系统试件恒应变率加载实验方法研究 [J]. 爆炸与冲击, 2004, 24(5): 413–418. doi: 10.3321/j.issn:1001-1455.2004.05.006

    TAO J L, TIAN C J, CHEN Y Z, et al. Investigation of experimental method to obtain constant strain rate of specimen in SHPB [J]. Explosion and Shock Waves, 2004, 24(5): 413–418. doi: 10.3321/j.issn:1001-1455.2004.05.006
    [21]
    SHEIKH M Z, WANG Z, DU B, et al. Static and dynamic Brazilian disk tests for mechanical characterization of annealed and chemically strengthened glass [J]. Ceramics International, 2019, 45(6): 7931–7944. doi: 10.1016/j.ceramint.2019.01.106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views(5858) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return