Volume 33 Issue 5
Sep 2019
Turn off MathJax
Article Contents
ZHANG Hui, SONG Mitao. Free Vibrations of Pre/Post-Buckled Graphene-Reinforced Epoxy Resin Matrix Nanocomposite Beams[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054102. doi: 10.11858/gywlxb.20190701
Citation: ZHANG Hui, SONG Mitao. Free Vibrations of Pre/Post-Buckled Graphene-Reinforced Epoxy Resin Matrix Nanocomposite Beams[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054102. doi: 10.11858/gywlxb.20190701

Free Vibrations of Pre/Post-Buckled Graphene-Reinforced Epoxy Resin Matrix Nanocomposite Beams

doi: 10.11858/gywlxb.20190701
  • Received Date: 03 Jan 2019
  • Rev Recd Date: 23 Jan 2019
  • Publish Date: 25 Jul 2019
  • Free vibration of pre/post-buckled graphene-reinforced nanocomposite beams was analyzed by the differential quadrature method. Considering the random distribution and directional arrangement of graphene nanoplatelets in the matrix, Young’s moduli of graphene nanocomposites in two modes were estimated by Halpin-Tsai micromechanical model. The first-order shear deformation theory was used to establish the governing equations of beams by Hamilton principle. The critical buckling loads of the graphene-reinforced nanocomposite beam and the natural frequencies in the pre/post-buckling regimes were calculated by the differential quadrature method. Numerical results show that dispersing more graphene platelets with less single layers and arranging them in a reasonable mode will greatly increase the critical buckling loads of the beams and the natural frequencies in pre-buckling regime. However, the same approach reduces the stiffnesses of the beams in the post-buckling regime.

     

  • loading
  • [1]
    SASHA S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials [J]. Nature, 1990, 442(2): 282–283.
    [2]
    RAHMAN R, HAQUE A. Molecular modeling of crosslinked graphene-epoxy nanocomposites for characterization of elastic constants and interfacial properties [J]. Composites Part B: Engineering, 2013, 54(9): 353–364.
    [3]
    JI X Y, CAO Y P, FENG X Q. Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites [J]. Modelling & Simulation in Materialsence & Engineering, 2010, 18(4): 1–16.
    [4]
    KING J A, KLIMEK D R, MISKIOGLU I, et al. Mechanical properties of graphene nanoplatelet/epoxy composites [J]. Journal of Applied Polymer Science, 2013, 128(6): 4217–4223. doi: 10.1002/app.v128.6
    [5]
    ZHAO X, ZHANG Q, CHEN D, et al. Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites [J]. Macromolecules, 2010, 43(5): 2357–2363. doi: 10.1021/ma902862u
    [6]
    RAFIEE M, RAFIEE J, YU Z Z, et al. Buckling resistant graphene nanocomposites [J]. Applied Physics Letters, 2009, 95(22): 10–18.
    [7]
    NGUYEN T K, VO T P, THAI H T. Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory [J]. Composites Part B: Engineering, 2013, 55(55): 147–157.
    [8]
    PARASHAR A, MERTINY P. Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite [J]. Nanoscale Research Letters, 2012, 7(1): 515–518. doi: 10.1186/1556-276X-7-515
    [9]
    FENG C, KITIPORNCHAI S, YANG J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs) [J]. Composites Part B: Engineering, 2017, 110(1): 132–140.
    [10]
    YANG J, WU H, KITIPORNCHAI S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams [J]. Composite Structures, 2017, 161(1): 111–118.
    [11]
    LIAN G, TUAN C C, LI L, et al. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading [J]. Chemistry of Materials, 2016, 28(17): 6096–6104. doi: 10.1021/acs.chemmater.6b01595
    [12]
    WU S, LADANI R B, JIN Z, et al. Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites [J]. Carbon, 2015, 94(1): 607–618.
    [13]
    ZHANG Y F, HAN D, ZHAO Y H, et al. High-performance thermal interface materials consisting of vertically aligned graphene film and polymer [J]. Carbon, 2016, 109(1): 552–557.
    [14]
    韩依廷. 定向排列石墨烯/聚合物复合材料研究进展 [J]. 石化技术, 2017, 24(12): 207–208. doi: 10.3969/j.issn.1006-0235.2017.12.167

    HAN Y T. Research progress of directional arrangement of graphene/polymer composites [J]. Petrochemical Industry Technology, 2017, 24(12): 207–208. doi: 10.3969/j.issn.1006-0235.2017.12.167
    [15]
    AFFDL J C H, KARDOS J L. The Halpin-Tsai equations: a review [J]. Polymer Engineering & Science, 1976, 16(5): 344–352.
    [16]
    WANG F, LIAO X, XIONG X. Characteristics of the differential quadrature method and its improvement [J]. Mathematical Problems in Engineering, 2015(6): 1–9.
    [17]
    CHOUDHURY A. Preparation and characterization of nanocomposites of poly-p-phenylene benzobisthiazole with graphene nanosheets [J]. Rsc Advances, 2014, 4(17): 8865–8870.
    [18]
    VAN ES M. Polymer-clay nanocomposites: the importance of particle dimensions [D]. Delft, Netherlands: Delft University of Technology, 2001: 18–37.
    [19]
    BERT C W. Differential quadrature and its application in engineering, by Chang Shu, Springer, London, 2000 [J]. International Journal of Robust & Nonlinear Control, 2010, 11(14): 1398–1399.
    [20]
    LIU X, METCALF T H, ROBINSON J T, et al. Shear modulus of monolayer graphene prepared by chemical vapor deposition [J]. Nano Letters, 2012, 12(2): 1013–1017. doi: 10.1021/nl204196v
    [21]
    YASMIN A, DANIEL I M. Mechanical and thermal properties of graphite platelet/epoxy composites [J]. Polymer, 2004, 45(24): 8211–8219. doi: 10.1016/j.polymer.2004.09.054
    [22]
    RAFIEE M A, JAVAD R, ZHOU W, et al. Enhanced mechanical properties of nanocomposites at low graphene content [J]. Acs Nano, 2009, 3(12): 3884–3890. doi: 10.1021/nn9010472
    [23]
    XIAO L, METCALF T H, ROBINSON J T, et al. Internal friction and shear modulus of graphene films [J]. Solid State Phenomena, 2012, 184(1): 319–324.
    [24]
    LIANG J, YI H, LONG Z, et al. Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites [J]. Advanced Functional Materials, 2010, 19(14): 2297–2302.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(6902) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return